### **Topic: 1** Algebraic Manipulation

| Learning | Outcomes and Scaffolding                                                                                                | Textbook Ref | Edexcel<br>Ref |
|----------|-------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| 9.3.1    | Take out common factors                                                                                                 |              | 2.2, D(F)      |
|          | $_{\pi}$ Single numerical factor: $4x + 8$                                                                              |              |                |
|          | $π$ Numerical and algebraic factor: $3x - 9x^3$                                                                         |              |                |
|          | $\pi$ Linear factor: $(x-1)(3x-2) + (x-1)(x+9)$                                                                         |              |                |
| 9.3.2    | Expand the product of two simple linear expressions                                                                     |              | 2.2, E(F)      |
|          | π Emphasize the distributive property: $(a + b)(c + d) = a(c + d) + b(c + d)$                                           |              |                |
| 9.3.3    | Understand the concept of a quadratic expression and be able to factorise such expressions (limited to $x^2 + bx + c$ ) |              | 2.2, F(F)      |
|          | $\pi$ Ensure all combinations of negatives are examined and compared:                                                   |              |                |
|          | $x^2 + 6x + 8$ $x^2 - 6x + 8$ $x^2 - 2x - 8$ $x^2 + 2x - 8$                                                             |              |                |
| 9.3.4    | Be able to recognise, expand and factorise difference of two squares: $a^2 - b^2 = (a + b)(a - b)$                      |              |                |
|          |                                                                                                                         |              |                |
|          | Suggested Extension: Factorise quadratics where each term is divisible by the same integer (including negative 1):      |              |                |
|          | $2x^2 + 10x + 12 = 2(x^2 + 5x + 6) = 2(x + 2)(x + 3)$                                                                   |              |                |
|          | $8 - 2x - x^2 = -1(x^2 + 2x - 8) = -(x + 4)(x - 2)$                                                                     |              |                |

### **Topic: 2** Percentages

| Learni | ng Outcomes and Scaffolding                                                                                               | <b>Textbook Ref</b> | <b>Edexcel Ref</b> |
|--------|---------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|
| 9.2.1  | Use reverse percentages                                                                                                   |                     | 1.6, F(F)          |
|        | $\pi$ In a sale, prices were reduced by 30%. The sale price of an item was 17.50. Calculate the original price item.      |                     |                    |
|        | $\pi$ Make sure pupils understand terms such as VAT and APR which may not be common knowledge in UAE. British VAT at 20%. |                     |                    |
| 9.2.2  | Use compound interest and depreciation                                                                                    |                     | 1.6, G(F)          |
|        | $\pi$ Simple calculations that involve a max of three iterations with no indices on the multiplier.                       |                     |                    |

### **Topic: 3** Linear Equations

| Learning | Outcomes and Scaffolding                                                                                                                        | Textbook Ref | Edexcel                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|
| 9.1.1    | Solve linear equations, with fractional coefficients, in one unknown in which the unknown appears on either side or both sides of the equation: |              | <b>Ref</b><br>2.4, A(F) |

| $\frac{4x+5}{2} = 3$   | $\frac{x}{2} + 1 = 8 - \frac{3x}{5}$      | $\frac{x+1}{2} = \frac{3-x}{5}$     | $\frac{2x}{3} - 5 = \frac{x+1}{2}$       |
|------------------------|-------------------------------------------|-------------------------------------|------------------------------------------|
| $\frac{x}{3} - 5 = 10$ | $\frac{2(x+1)}{3} + \frac{5(x-5)}{4} = 2$ | $\frac{x-2}{3} - \frac{x+1}{5} = 1$ | $\frac{1}{3}x - 2 = \frac{3}{5}(1 - 2x)$ |

Suggested extension: Solve equations where  $x^2$  terms cancel on both sides:  $x(x+6) = x^2 + 5x + 6$ 

NA

### **Topic: 4** Statistical Measures

| Learning | g Outcomes and Scaffolding                                                                          | Textbook Ref | Edexcel Ref |
|----------|-----------------------------------------------------------------------------------------------------|--------------|-------------|
| 9.4.1    | Calculate an estimate for the mean for grouped data                                                 |              | 6.2, C(F)   |
|          | $\pi$ Also look at finding the total of the frequency and the distinction between this and the mean |              |             |
| 9.4.2    | Identify the modal class for grouped data                                                           |              | 6.2, D(F)   |

#### **Topic: 5** Expressions and Formulae

| Learning | g Outcomes and Scaffolding                                                                                                          | Textbook Ref | Edexcel Ref |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--|
| 9.5.1 U  | Use formulae from mathematics and other real-life contexts expressed initially in words or diagrammatic form and convert to letters |              | 2.3, D(F)   |  |
| á        | and symbols                                                                                                                         |              |             |  |
| 9.5.2    | Derive a formula or expression                                                                                                      |              | 2.3, E(F)   |  |
| 9.5.3 I  | Know the inverse operations of squares, cubes and roots.                                                                            |              |             |  |
| 9.5.4    | Change the subject of a formula where the subject appears once                                                                      |              | 2.3, F(F)   |  |
|          | $\pi$ Make $r$ the subject of $A=\pi r^2$                                                                                           |              |             |  |
|          | $\pi$ Make $t$ the subject of $v=u+at$                                                                                              |              |             |  |
|          | $\tau$ Make $\eta$ the subject of $F = \frac{1}{2}m\eta^2$                                                                          |              |             |  |

#### Topic: 6 Graphs

| Le | Learning Outcomes and Scaffolding                                                                             |  | Edexcel Ref |
|----|---------------------------------------------------------------------------------------------------------------|--|-------------|
| 9  | .6.2 Determine the coordinates of the midpoint of a line segment, given the coordinates of the two end points |  | 3.3, E(F)   |
|    | $\pi$ Also ask for an end point given the start and the mid-point                                             |  |             |
| 9  | .6.4 Find the gradient of a straight line                                                                     |  | 3.3, G(F)   |
|    | $\pi$ Gradient is the distance travelled in the y-direction after going 1 unit in the x-direction             |  |             |

- $\pi$  Gradient = (increase in y) ÷ (increase in x)
- π Use the equation for a gradient between two points:  $m = \frac{y_2 y_1}{x_2 x_1}$
- 9.6.5 Recognise that equations of the form y = mx + c are straight line graphs with gradient m and intercept on the y-axis at the point (0, c)

3.3, H(F)

- $\pi$  Write down the gradient and coordinates of the y-intercept of eg; y = 3x + 5 & 2y 4x = 6
- $\pi$  Write down the equation of the straight line with gradient 6 that passes through the point (0,2)
- 9.6.6 Be able to find the equation of a line given a gradient and a coordinate it passes through (not y-intercept).
  - Eg: Find the equation of a line with gradient -2 which passes through coordinate (5, -3).
- 9.6.7 Apply knowledge of straight line graphs to solve simultaneous equations graphically.

Eg: Consider the graphs of y = 2x + 3 and y = 9 - x. Find the point of intersection, and hence solve the pair of simultaneous equations.

#### **Topic: 7** Set Language and Set Notation

| Learning ( | Outcomes and Scaffolding                                                                                                  | Textbook Ref | <b>Edexcel Ref</b> |
|------------|---------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|
| 9.9.1      | Understand the definition of a set                                                                                        |              | 1.5, A(F)          |
| 9.9.2      | Use the set notation $\xi, \cup, \cap, \in, \emptyset \& \notin$                                                          |              | 1.5, B(F)          |
| 9.9.3      | Understand the concept of the Universal Set and the Empty Set and the symbols for these sets                              |              | 1.5, C(F)          |
| 9.9.4      | Understand and use the complement of a set $\pi$ Use the notation $A'$                                                    |              | 1.5, D(F)          |
| 9.9.5      | Understand sets defined in algebraic terms, and understand and use subsets If $A$ is a subset of $B$ , then $A \subset B$ |              |                    |
| 9.9.6      | Know, understand and use the concept of the number of elements in a set. Including using the n notation: $n(a)$           |              |                    |
| 9.9.7      | Use Venn diagrams to represent sets.                                                                                      |              | 1.5, E(F)          |
| 998        | Reable to sort information into a Venn diagram                                                                            |              |                    |

#### Topic: 8 Polygons

# Learning Outcomes and ScaffoldingTextbook RefEdexcel Ref9.8.1 Know the term 'regular polygon' and calculate interior and exterior angles of regular polygons4.2, D(F)π Identify regular and irregular polygons

- $\pi \quad \mbox{ Identify the exterior and interior angles of a polygon }$
- $\pi$  Find the exterior angle of a polygon using the formula

| 9.8.2 | Know and use the angle sum of polygons                                                             | 4.2, E(F) |
|-------|----------------------------------------------------------------------------------------------------|-----------|
|       | $\pi$ For a polygon with $n$ sides, the sum of the interior angles is $(2n-4)$ right angles        |           |
| 9.8.3 | Know congruence as meaning the same shape and size                                                 | 4.2, F(F) |
| 984   | Know that two or more polygons with the same shape and size are said to be congruent to each other | 4.2 G(F)  |

# **Topic: 9** Probability

| Learnin | g Outcomes and Scaffolding                                                                                                                                                                        | Textbook Ref | <b>Edexcel Ref</b> |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|
| 9.9.1   | List all the outcomes for single events and for two successive events in a systematic way.                                                                                                        |              |                    |
| 9.9.2   | Select a sample space diagram, Venn diagram or frequency table to record information and then calculate probabilities from it. Calculate the probability of the complement of an event happening. |              |                    |
| 9.9.3   | Know that subtracting from 1 gives the complement. Use the addition rule of probability for mutually exclusive events.                                                                            |              |                    |
| 9.9.4   | Use the 'OR' rule to find probabilities different events. Understand and use the term expected frequency                                                                                          |              |                    |

# **Topic: 10** Inequalities

| 9.10.1 Understand and use the symbols $>$ , $<$ , $\ge$ and $\le$ $\pi$ Write inequalities using the notation from context |  |
|----------------------------------------------------------------------------------------------------------------------------|--|
| π Write inequalities using the notation from context                                                                       |  |
| * Write inequalities using the notation from context                                                                       |  |
| 9.10.2 Understand and use the convention for open and closed intervals on a number line 1.5, B(F                           |  |
| $\pi$ Express inequalities on a number line for intervals                                                                  |  |
| 9.10.3 Solve simple linear inequalities in one variable and represent the solution set on a number line 1.5, C(F           |  |
| $\pi$ Solve linear inequalities in one variable expressing the solution on a number line or as a list of integers          |  |
| $_{\pi}$ Solve an enclosed interval: $-4 < 2x + 2 < 20$                                                                    |  |
| 9.10.4 Emphasise the issues with dividing by a negative or moving a variable to the other side of an equation.             |  |
| $\pi \text{ Eg}; -3x > 9 \text{ , } 9 - 2x \le -3$                                                                         |  |

### **Topic: 11** Transformation Geometry

| Learning Outcomes and Scaffolding                                                                | Textbook Ref | <b>Edexcel Ref</b> |
|--------------------------------------------------------------------------------------------------|--------------|--------------------|
| 9.11.1 Understand that enlargements are specified by a centre and a scale factor                 |              | 5.2, J(F)          |
| 9.11.2 Understand that enlargements preserve angles and not lengths                              |              | 5.2, K(F)          |
| 9.11.3 Enlarge a shape given the scale factor                                                    |              | 5.2, L(F)          |
| $\pi$ Positive integer and positive fractional scale factors covered.                            |              |                    |
| 9.11.4 Identify and give complete descriptions of transformations (mixed transformations)        |              | 5.2, M(F)          |
| $\pi$ Complete problems involving a mix of rotations, reflections, enlargements and translations |              |                    |

### Topic: 12 Measures

| Learning Outcomes and Scaffolding                                                            | Textbook Ref | <b>Edexcel Ref</b> |
|----------------------------------------------------------------------------------------------|--------------|--------------------|
| 9.12.1 Understand and use the relationship between average speed, distance and time          |              | 4.4, F(F)          |
| $\pi$ Apply the formula both with numbers and algebraically                                  |              |                    |
| $\pi$ Solve problems with changes to units. I.e. time given in minutes but speed in km/h     |              |                    |
| 9.12.2 Interpret information presented in a range of linear and non-linear graphs            |              | 3.3, A(F)          |
| $\pi$ Distance/time graphs                                                                   |              |                    |
| $\pi$ Speed/time graphs                                                                      |              |                    |
| 9.12.3 Know and use the formulas for density and pressure.                                   |              |                    |
|                                                                                              |              |                    |
| Apply these to exam style questions, including questions involving area/volume calculations. |              |                    |

# **Topic: 13** Standard Form

| Le  | arning Outcomes and Scaffolding Textbook Ref                                                                  | Edexcel Ref |  |  |
|-----|---------------------------------------------------------------------------------------------------------------|-------------|--|--|
| 9.2 | 13.1 Calculate with and interpret numbers in the form $a 	imes 10^n$ where n is an integer and $1 \le a < 10$ | 1.9, A(F)   |  |  |
| 9.2 | 9.13.2 Solve problems involving standard form                                                                 |             |  |  |
|     | $\pi$ Compare values given in standard form                                                                   |             |  |  |
|     | $\pi$ Use the calculator to complete calculations given in standard form                                      |             |  |  |
|     | $\pi$ Express answers in normal form or standard form                                                         |             |  |  |
| 9.1 | 13.3 Be able to multiply and divide in standard form, converting the answer back into standard form.          |             |  |  |

#### Topic: 14 Decimals

#### **Learning Outcomes and Scaffolding**

Textbook Ref **Edexcel Ref** 9.14.1 Convert recurring decimals into fractions 1.3, A(H)

- $\pi$  Express 0.  $\dot{7}$  as a fraction in its simplest form
- $\pi$  Express 0.29 as a fraction in its simplest form
- $\pi$  Express 0. 3114 as a fraction in its simplest form
- 9.14.2 Suggested extension: multiply recurring decimals by converting them to fractions first:

$$Eg: 0.\dot{4} \times 0.125 =$$

$$1.3\dot{5}\dot{6} \times 0.\dot{6} =$$

#### Topic: 15 Trigonometry and Pythagoras' Theorem

#### **Learning Outcomes and Scaffolding Textbook Ref Edexcel Ref** 4.8, B(F)

4.8, C(F)

3.3, A(H)

- 9.15.1 Know, understand and use sine, cosine and tangent of acute angles to determine lengths and angles of a right-angled triangle
- 9.15.2 Apply trigonometrical methods to solve problems in two dimensions
  - π Solve problems in context involving both Pythagoras' Theorem and Trigonometry
- 9.15.3 Apply trigonometry to connected triangles involving a combination of pythagoras and trigonometry.
- 9.15.6 Be able to calculate angles of elevation and depression.

#### Topic: 16 Graphs

#### **Learning Outcomes and Scaffolding Textbook Ref Edexcel Ref** 9.16.1 Recognise, generate points and plot graphs quadratic functions. 3.3, I(F)

- $\pi$  Know the common features of a linear graph, y-intercept and gradient and be able to use these on the grid
  - $\pi$  Use the calculator to create a table of values for drawing the graph
  - $\pi$  Know that a quadratic graph is symmetrical and use it to help you find the coordinates
- 9.16.2 Recognise, plot and draw graphs with equation:  $y = Ax^3 + Bx^2 + Cx + D$  in which: (i) the constants are integers, and some could be zero (ii) the letters x and y can be replaced with any other two letters
  - $\pi$  Know a cubic graph has two turning points and be able to identify the y-intercept
- Be able to recognise the graphs of straight line, quadratic and cubic graphs, matching the graphs to the equation based on the simple 9.16.3 features of the curves.