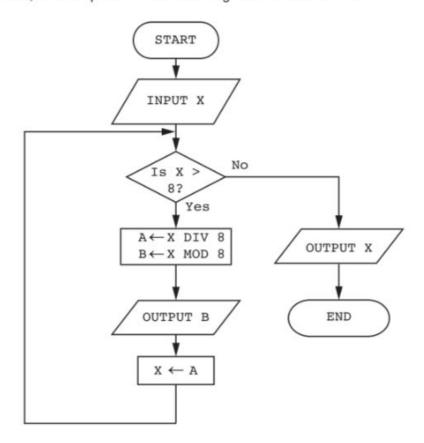

4 Study the flowchart.

Complete the trace table for the input values 4, 3, -1:

Α	В	С	OUTPUT

3 The flowchart below calculates the number of tins of paint required to paint walls. The flowchart inputs the height and width of a wall in metres, the number of doors and the number of windows. A value of -1 for the height stops the input.



Complete the trace table for the input data:

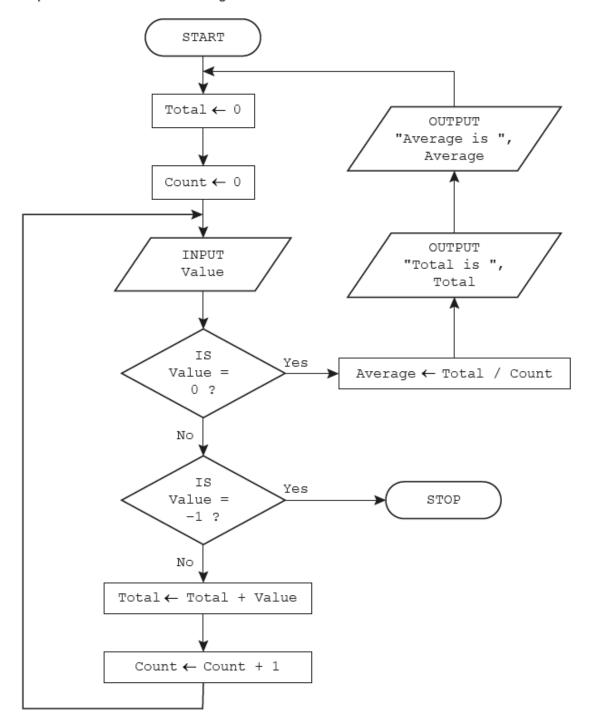
3, 5, 1, 0, 3, 7, 0, 0, 3, 5, 0, 3, 3, 7, 1, 1, -1, 0, 0, 0

Area	Tins	Height	Width	Doors	Windows

3 The flowchart below inputs an integer. The predefined function DIV gives the value of the division, for example Z ← 11 DIV 3 gives the value Z = 3. The predefined function MOD gives the value of the remainder, for example Z ← 11 MOD 3 gives the value Z = 2.

Complete a trace table for each of the two input values 33 and 75.

Trace table for input value 33

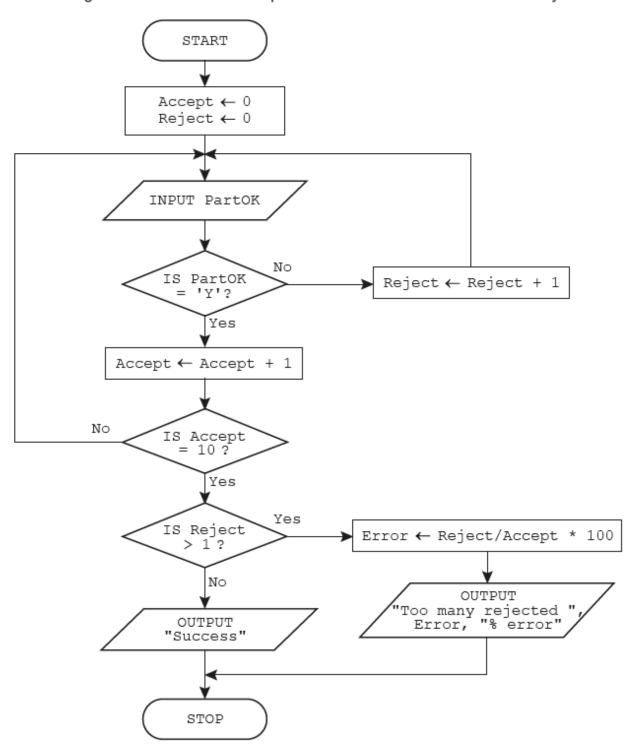

х	Α	В	OUTPUT

Trace table for input value 75

Х	Α	В	OUTPUT

6 The flowchart represents an algorithm that performs a process on groups of values that are input. The algorithm will fail if the first value of any group is 0.

An input of -1 will terminate the algorithm.


(a) Complete the trace table for the input data:

25, 35, 3, 0, 57, 20, 25, 18, 0, -1, 307, 40, 0

Value	Average	Total	Count	OUTPUT

		[5]
(b)	Describe the purpose of the algorithm.	
		••••
		[0]

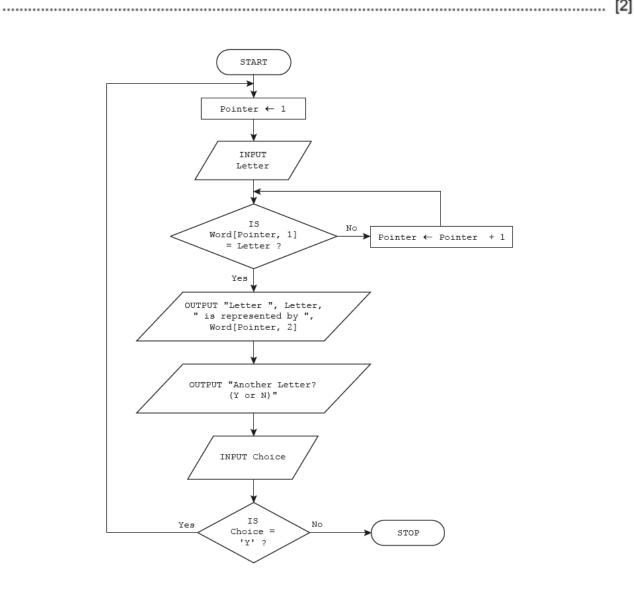
8 This is an algorithm to find if a batch of parts has been manufactured successfully.

(a) Complete the trace table using this data:

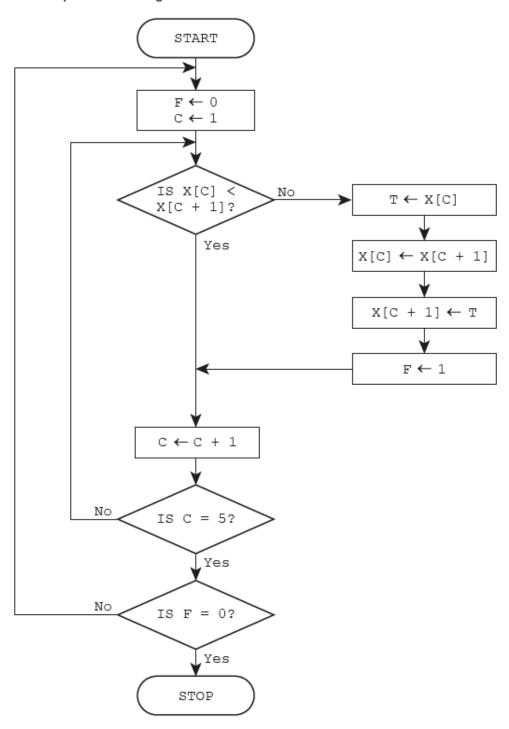
Y, Y, Y, N, Y, Y, Y, Y, N, Y, Y, Y, Y	Y. Y	'. Y.	N. Y	/ Y.	Y.Y.	N.	Y.Y.	Y. Y
---------------------------------------	------	-------	------	------	------	----	------	------

Accept	Reject	PartOK	Error	OUTPUT

							[5]
(b)	Describe how the manufactured part.						


The table represents the two-dimensional (2D) array Word[] which stores the first half of the phonetic alphabet used for radio transmission. For example, Word[10,1] is 'J'.

Index	1	2
1	Α	Alpha
2	В	Bravo
3	С	Charlie
4	D	Delta
5	E	Echo
6	F	Foxtrot
7	G	Golf
8	Н	Hotel
9	ı	India
10	J	Juliet
11	К	Kilo
12	L	Lima
13	М	Mike


(a) Complete the trace table for the algorithm by using the input data: F, Y, D, N

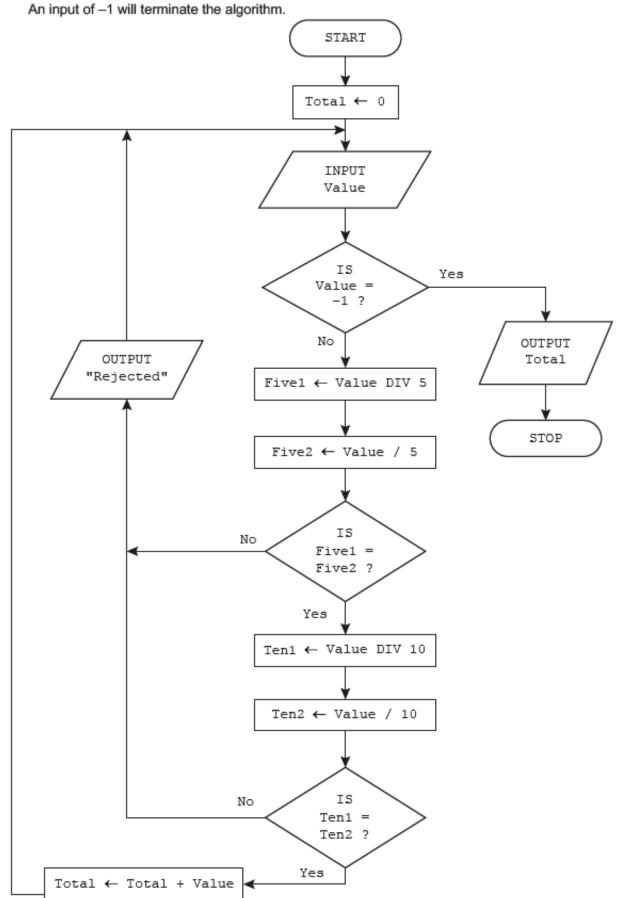
Pointer	Letter	Choice	OUTPUT

(b)	Identify the type of algorithm used.
	[1]
(c)	Describe one problem that could occur with this algorithm if an invalid character was input.
	ros

9 This flowchart represents an algorithm.

(a) The array X [1:5] used in the flowchart contains this data:

X[1]	x[2]	x[3]	X[4]	x[5]
10	1	5	7	11


Complete the trace table by using the data given in the array.

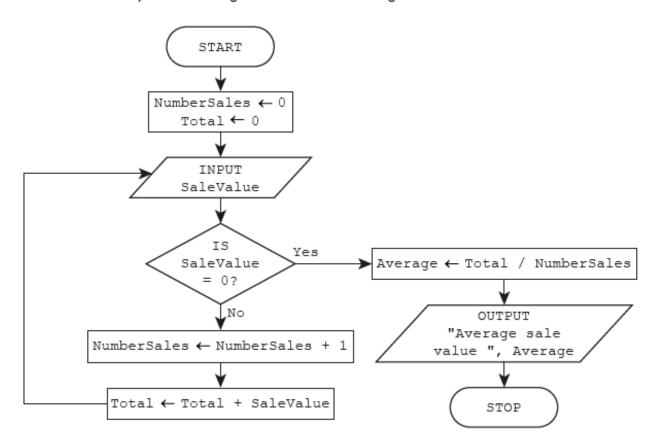
F	С	X[1]	X[2]	X[3]	X[4]	X [5]	Т
		10	1	5	7	11	

b)	Describe what the algorithm represented by the flowchart is doing.	
		[5]

[5]

7 The flowchart represents an algorithm.

(a) Complete the trace table for the input data:


5, 50, 52, 555, 57, 500, -1, 5500, 55

Total	Value	Fivel	Five2	Ten1	Ten2	OUTPUT

(b)	Describe the purpose of the algorithm.	
		[2]

[6]

8 This flowchart represents an algorithm to find the average value of a number of sales.

(a) Complete the trace table using this data: 5.50, 3.40, 6.25, 3.85, -11.00, 0

NumberSales	Total	SaleValue	Average	OUTPUT

(b)	Identify the error in the algorithm and describe how to correct it.			
	Error			
	Correction			
	[3]			

3 (a) This pseudocode inputs an integer. The predefined function DIV gives the value of the division, e.g. Y \leftarrow 10 DIV 3 gives the value Y = 3. The predefined function MOD gives the value of the remainder, e.g. Y \leftarrow 10 MOD 3 gives the value Y = 1.

```
INPUT X
WHILE X > 15
  DO
  T1 ← X DIV 16
  T2 ← X MOD 16
  CASE T2 OF
   10:OUTPUT A
   11:OUTPUT B
   12:OUTPUT C
    13:OUTPUT D
    14:OUTPUT E
    15:OUTPUT F
   OTHERWISE OUTPUT T2
  ENDCASE
  X \leftarrow T1
ENDWHILE
CASE X OF
  10:OUTPUT A
  11:OUTPUT B
  12:OUTPUT C
 13:OUTPUT D
  14:OUTPUT E
  15:OUTPUT F
  OTHERWISE OUTPUT X
ENDCASE
```

Complete a trace table for each of the two input values 37 and 191.

Trace table for input value 37

Х	T1	T2	OUTPUT

Trace table for input value 191

х	T1	T2	OUTPUT

(b) State the purpose of the pseudocode in part (a).

[4]