3 - Hardware

3.	1 Computer architecture		
1	(a) Understand the role of the central processing unit (CPU) in a computer		
1	(b) Understand what is meant by a microprocessor		
2	(a) Understand the purpose of the components in a CPU, in a computer that has a Von		
	Neumann architecture		
2	(b) Describe the process of the fetch–decode–execute cycle including the role of each		
	component in the process		
3	Understand what is meant by a core, cache and clock in a CPU and explain how they can		
	affect the performance of a CPU		
4	Understand the purpose and use of an instruction set for a CPU		
5	Describe the purpose and characteristics of an embedded system and identify devices in		
	which they are commonly used		

More Guidance:

3.1 Computer architecture

Candidates should be able to:

- 1 (a) Understand the role of the central processing unit (CPU) in a computer
 - (b) Understand what is meant by a microprocessor
- (a) Understand the purpose of the components in a CPU, in a computer that has a Von Neumann architecture
 - (b) Describe the process of the fetch-decode-execute cycle including the role of each component in the process
- 3 Understand what is meant by a core, cache and clock in a CPU and explain how they can affect the performance of a CPU
- 4 Understand the purpose and use of an instruction set for a CPU
- 5 Describe the purpose and characteristics of an embedded system and identify devices in which they are commonly used

Notes and guidance

- The CPU processes instructions and data that are input into the computer so that the result can be output
- A microprocessor is a type of integrated circuit on a single chip
- Including:
 - units: arithmetic logic unit (ALU) and control unit (CU)
 - registers: program counter (PC), memory address register (MAR), memory data register (MDR), current instruction register (CIR) and accumulator (ACC)
 - buses: address bus, data bus and control bus
- How instructions and data are fetched from random access memory (RAM) into the CPU, how they are processed using each component and how they are then executed
- Storing data and addresses into specific registers
- Using buses to transmit data, addresses and signals
- Using units to fetch, decode and execute data and instructions
- The number of cores, size of the cache and speed of the clock can affect the performance of a CPU
- An instruction set is a list of all the commands that can be processed by a CPU and the commands are machine code
- An embedded system is used to perform a dedicated function, e.g. domestic appliances, cars, security systems, lighting systems or vending machines. This is different to a general purpose computer that is used to perform many different functions, e.g. a personal computer (PC) or a laptop

1	A st	tudent uses a computer and several hardware devices to complete his schoolwork.	
	The	e computer has a central processing unit (CPU).	
	(a)	The student uses a keyboard to complete his schoolwork.	
		Tick (✓) one box to show which type of device the keyboard is.	
		A input	
		B memory	
		C output	
		D storage	
			[1]
	(b)	The student uses a printer to print his schoolwork.	
		Tick (✓) one box to show which type of device the printer is.	
		A input	
		B memory	
		C output	
		D storage	[4]
	(c)	A component in the CPU sends signals to manage the fetch-decode-execute cycle.	[1]
	(c)	A component in the OFO serius signals to manage the letth-decode-execute cycle.	
		State the name of this component.	
			[1]

(d)	The	CPU has a clock speed of 2.4 Ghz.
	Des	cribe what is meant by a 2.4 Ghz clock speed.
		[2]
(e)	The	CPU contains registers including the memory data register (MDR).
	(i)	Describe the role of the MDR in the fetch-decode-execute cycle.
		[2]
	(ii)	Identify three other registers contained in the CPU.
		1
		2
		3[3]

A user's computer has a central processing unit (CPU) that has a clock speed of 2 GHz.

3

	She	wan	its to change it to a CPU that has a clock speed of 3 GHz.	
	(a)	(i)	State what is meant by clock speed.	
				[1]
		(ii)	Explain the effect this change will have on the performance of the CPU.	
				[2]
	(b)	The	CPU contains a memory address register (MAR).	
		Des	cribe the role of the MAR in the fetch-decode-execute cycle.	
				[2]
	(c)		CPU has a list of all the machine code commands it can process.	
		Stat	te the name of this list of commands.	[1]
ı	A wa	shing	g machine is an example of an embedded system.	
	(a)	Give	two characteristics of an embedded system.	
		1		
	:	2		
				[2]

(b) Circle three other examples of an embedded system.

			freezer	laptop		
		personal computer (PC)	security	light syster	n smartphon	е
		vendin	g machine	web se	rver	[3]
3	A c	omputer has a central proces	sing unit (CPU).			
		Circle three components the		e CPU.		
		accumulator (ACC)	control u	ınit (CU)	graphics card	
		hard disk drive (HDD)	motherbo	ard	program counter (PC))
		random access me	mory (RAM)	read or	nly memory (ROM)	[3]
	(b)	The CPU has cache.				
		Explain the purpose of the o	ache.			
						[2]
						[2]
(c)		ne CPU has a component to PU can perform in a second		e number	of fetch-decode-exe	cute cycles the
	St	ate the name of this compo	nent.			
						[1]
(d) Th	e CPU has a component th	at carries out all	calculation	ns and logical operation	ons.
	St	ate the name of this compo				
						[1]

2 A library has a self-checkout system that allows customers to register books that they want to borrow. The self-checkout system has a central processing unit (CPU). The CPU has two cores. (a) State the purpose of a core in the CPU.[1] (b) The CPU is replaced with one that has four cores. Explain the effect this has on the performance of the self-checkout system.[2] (c) The CPU contains registers and buses. (i) Describe the role of a register in the CPU.[2] Identify one bus that can be found in the CPU and explain its purpose in the fetch-decode-execute cycle. Bus Purpose

.....

[3]

(d)	The self-checkout system allows the user to input their library membership number.		
	Give two appropriate input devices that would allow the user to do this.		
	1		
	2	 2]	
		[2	
(e)	The self-checkout system uses a monitor to display information about the book.		
	Users who are blind also need to use the self-checkout system.		
	Give an appropriate output device that would allow a blind user to be given this information.		
		1]	
(f)	The self-checkout system uses two types of primary storage.		
	Circle two types of primary storage that would be used in the system.		
	compact disk (CD) digital versatile disk (DVD)		
	hard disk drive (HDD) random access memory (RAM)		
	read only memory (ROM) universal serial bus (USB) flash memory drive	2]	
(g)	The self-checkout system is linked to a stock control system that is updated every time book is borrowed from the library.	а	
	A microprocessor is used in the stock control system to update the stock.		
	Explain the role of the microprocessor in this system and how it is used to update the stock when a book is borrowed.	k	
		3]	
		-	

2

	il has a computer that is designed using the Von Neumann model. The computer has a ntral processing unit (CPU).
(a)	One type of component within the CPU is an address bus.
	Identify two other types of bus and state what each is responsible for transmitting in the CPU.
	Bus 1
	Bus 2
	[4]
(b)	The CPU performs a cycle that has three stages. One of these stages is execute.
()	
	Identify one other stage of the cycle that is performed by the CPU.
	[1]
(c)	Identify the component within the CPU that the accumulator is built into and describe the purpose of the accumulator.
	[3]

7	The paragraph explains how an instruction is processed by the Central Processing Unit (CPU).
	Complete the paragraph using the list of terms. Not all terms in the list need to be used.

- address bus
- Arithmetic Logic Unit (ALU)
- calculations
- data bus
- decoded
- execute
- fetched
- interrupt
- Memory Address Register (MAR)
 Memory Data Register (MDR)
 Program Counter (PC)

- protocol
- ROM
- stored

An instruction is	from RAM into the CPU, where
it is temporarily stored in the	
then sent along the	to the Control Unit (CU) to be
will then perform any	and logic operations that are
required to	the instruction.

[7]

Component 2

[2]

- 6 Six statements are given about the role of components in the Central Processing Unit (CPU).
 - (a) Tick (✓) to show whether each statement applies to the Memory Address Register (MAR), Memory Data Register (MDR) or Program Counter (PC).

PC

(</

MDR

(</

MAR

(\$\sqrt{)}

Some statements may apply to more than one component.

Statement

it is a register in the CPU

	it	holds the address of the next instruction to be processed				
		holds the address of the data that is about to be fetched om memory				
	it	holds the data that has been fetched from memory				
	it	receives signals from the control unit				
		uses the address bus to send an address to another omponent				
				1	1	[6]
	(b)	Identify the component in the CPU that carries out calculate	tions.			
						[1]
9	Pac	lma opens an application on her computer.				
		interrupt is generated to inform the Central Processing Union opened.	nit (CPU) that the	application	on has
	(a)	Give three other examples of when an interrupt signal cou	ıld be ger	nerated.		
		1				
		2				
		3				[3]
	(b)	State what would happen if interrupt signals were not use	d in a cor	nputer.		[-]
			•••••			
						[1]

5 In a Von Neumann model for a computer system, a Central Processing Unit (CPU) contains a number of different components.

The table contains the name of a component or a description of their role in the fetch-execute cycle.

Complete the table with the missing component names and descriptions.

Component name	Description
Memory Address Register (MAR)	
Program Counter (PC)	
	This is a register that is built into the arithmetic logic unit. It temporarily holds the result of a calculation.
	This is a register that holds data or an instruction that has been fetched from memory.
Control Unit (CU)	
	This carries addresses around the CPU.

10 Several components are involved in processing an instruction in a Von Neumann model for a computer system.

Three of these components are the arithmetic logic unit (ALU), control unit (CU) and random access memory (RAM).

(a) Six statements are given about the components.

Tick (✓) to show if each statement applies to the ALU, CU or the RAM. Some statements may apply to more than one component.

Statement	ALU (✓)	CU (✓)	RAM (✓)
stores data and instructions before they enter the central processing unit (CPU)			
contains a register called the accumulator			
manages the transmission of data and instructions to the correct components			
contained within the CPU			
uses the data bus to send data into or out of the CPU			
carries out calculations on data			

				[6]		
(b)) The accumulator is a register that is part of the Von Neumann model.					
	Give two other registers that are part of the Von Neumann	n model.				
	1					
	2					
				[2]		

3	The	he Von Neumann model, for a computer system, uses the stored program concept.					
	(a)	Describe what is meant by the stored program concept.					
			[2]			
	(b)	b) The fetch-execute cycle of a Von Neumann model, for a computer system, uses register buses.					
		(i)	Describe the role of the Program Counter.				
			[2]			
		(ii)	Describe the role of the Control Bus.				
			[2]			
	(c)	(c) Computers based on the Von Neumann model, for a computer system, use interrupts.					
		Explain why interrupts are needed.					
			[2]			