8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
10 e AO2 (maximum 9 marks) 15
e AO3 (maximum 6 marks)
Data Structures required names shown underlined must be used as given in the scenario
2D Array or list Evening[1:10, 1:20] / Evening[0:9, 0:19]
Variables Counter, SeatCounter, NumSeats, Row, Column
Requirements (techniques)
R1 Find number of seats available for each performance and output (searching, nested iteration, output)
R2 Inputs and validates number of seats (input, iteration, and selection)
R3 Checking if seats available (selection, assignment, output with appropriate messages)
Example 15-mark answer in pseudocode
// meaningful identifier names and appropriate data structures to store the data required
DECLARE Counter, SeatCounter, NumSeats, Row, Column : INTEGER
CONSTANT HouseFull = 200
CONSTANT MaxRow = 10
CONSTANT MaxColumn = 20
SeatCounterl « 0 // initialise seat counter for performance 1
Question Answer Marks
10 FOR Row < 1 TO 10

FOR Column <« 1 TO 20
IF Evening[Row, Column]
THEN
SeatCounter 4 Seatlounter + 1
ENDIF
NEXT Column
NEXT Row

// wvalidate input
OUTPUT "How many seats do you want to book? 1, 2, 3 cr 4 "
INPUT NumSeats

WHILE 1 < NumSeats OR Num3eats > 4 OR Num3Seats <> ROUND(NumSeats, 0)
OUTPUT "Please enter 1, 2, 3 or 4 for the number of seats "
INPUT NumSeats

ENDWHILE

IF SeatCounter + NumSeats > 200)// check for house full

THEN
QUTPUT "House full"
ELSE
IF SeatCounter + NumSeats > 200 // checks for not enough seats
THEN
OUTPFUT "Only ", SeatCounter + NumSeats - 200, " seats left"
ELSE

FOR Counter 4 1 TO NumSeats // book required number of seats for performance
Evening[MCD (SeatCounter + Counter, MaxColumn), DIV (SeatCounter +
Counter), MaxColumn] < TRUE
QUTPUT "Row ", MOD(SeatCounter + Counter, MaxColumn), " seat "
DIV (SeatCounter + Counter, MaxColumn)," booked"
NEXT Counter
ENDIF

I

8 Programming [15 MARKS]

ANSWERS

Marking Instructions in italics

AO2:

including the analysis and design of computational or programming problems

Apply knowledge and understanding of the principles and concepts of computer science to a given context,

0

1-3

4-6

7-9

No creditable
response.

At least one programming
technique has been used.
Any use of selection, iteration,
counting, totalling, input and
output.

Some programming techniques used
are appropriate to the problem.

More than one technique seen
applied to the scenario, check the list
of techniques needed.

The range of programming techniques
used is appropriate to the problem.

All criteria stated for the scenario have
been covered by the use of
appropriate programming techniques,
check list of techniques needed.

Some data has been stored but
not appropriately.

Any use of variables or arrays or
other language dependent data
structures e.g. Python lists.

Some of the data structures chosen
are appropriate and store some of the
data required.

More than one data structure used to
store data required by the scenario.

The data structures chosen are
appropriate and store all the data
required.

The data structures used store all the
data required by the scenario.

Marking Instructions in italics

AO3: Provide solutions to problems by:

evaluating computer systems

making reasoned judgements

presenting conclusions

0

1-2

3-4

5-6

No creditable
response.

Program seen without relevant
comments.

Program seen with some relevant
comment(s).

The program has been fully
commented

Some identifier names used are
appropriate

Some of the data structures
used have meaningful names.

The majority of identifiers used are
appropriately named.

Most of the data structures used have
meaningful names.

Suitable identifiers with names
meaningful to their purpose have been
used throughout.

All of the data structures used have
meaningful names.

The solution is illogical.

The solution contains parts that may
be illogical.

The program is in a logical order.

The solution is inaccurate in
many places.

Solution contains few lines of
code with errors that attempt to
perform a task given in the
scenario.

The solution contains parts that are
inaccurate.

Solution contains lines of code with
some errors that logically perform
tasks given in the scenario. Ignore
minor syntax errors.

The solution is accurate.

Solution logically performs all the
tasks given in the scenario. Ignore
minor syntax errors.

The solution attempts at least
one of the requirements.
Solution contains lines of code
that attempt at least one task
given in the scenario.

The solution attempts to meet most of
the requirements.

Solution contains lines of code that
perform most tasks given in the
scenario.

The solution meets all the
requirements given in the question.
Solution performs all the tasks given in
the scenario.

8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
11 Requirements may be met using a suitable built-in function from the 156

programming language used (Python, VB NET or Java)

Tables for AO2 and AO3 are used to award a mark in a suitable band using a
best fit approach.

Marks are available for:
o AOZ (maximum 9 marks)
o AO3 (maximum 6 marks)

Data Structures required with names as given in the scenario
The names underlined must be used as they are provided in the scenario:

Arrays or lists WoodType[], Price[], Customers[], Quotations[]

Requirements (techniques)

R1 Input and store customer name, room length and width, with validation of
input for room dimensions, including error message and repeated input
(Input with prompts, range check and iteration).

R2 Initialise wood arrays. Calculate room area, select and store wood
required. Determine cost of wood type and calculate price of wood to
purchase. Round and store all data to relevant array (array initialisation,
rounding, data retrieval from array, calculation and storage of resulis).

R3 Output full details: name of customer, choice of wood and quotation price
with appropriate messages. Program continues for next customer (Output
with messages, iteration of whole program).

8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
11 Example 15-mark answer in pseudocode

// declarations not required in the answer

// initial population of WoodType[] and Price[] arrays
// input and loops are also acceptable

WoodType[1l] ¢ "Laminate"

WoodType[2] < "Pins"

WoodType[3] <« "Oak"

[T P T
TR & RN 4
. . .

o RN & RN &)
LY s e s |

// initialises starting customer in sales arrays
CurrentCustomer <« 1
// to allow program to continue to next customer
Cont < TRUE
WHILE Cont DO
// input customer name
OUTPUT "Input the customer’s name
INPUT Customers [CurrentCustomer]
// input of room dimensions with wvalidation
QUTPUT "What is the length of your room?
INPUT RoomLendgth
// walidate RoomLength
WHILE RocmLength < 1.5 OR RoomLength > 10.0
QUTPUT "The measurement must be in the rangs 1.5
to 10.0 inclusive, please try again "
INPUT RoomLength
ENDWHILE
QUTPUT "What is the width of your room?
INPUT RocmWidth
// walidate RoomWidth

"

e "

WHILE RoomWidth < 1.5 OR RoomWidth > 10.0
QUTPUT "The measurement must be in the rangs 1.5
to 10.0 inclusive, pleasse try again "
INPUT RoomWidth
ENDWHILE
RoomArea 4— ROUND (RoomLength, 1) * ROUND (RoomWidth,

FoomArea 4— BOUND (Roomirea + 0.5, 0)
// show the wood available and prices
OUTPUT "the wood choices availabkle are:"™
OUTPUT "Number Wood Type Price($5)"
FOR Count < 1 TO 3
OUTPUT Count, " ", WoodType[Count], " ",

Question

8 Programming [15 MARKS]
ANSWERS

Answer

Marks

11

Price [Count]
Next Count
// input wood choice
OUTBEUT "Input a number from 1 to 3 "
INPUT WoocdChoice
// walidate wood choice
WHILE WoodChoice < 1 OR WoodChoice > 3
QUTPUT "Your input 1s out of range, please try
again "
INPUT WoodCholce
ENDWHILE
// to calculate the total cost of the wood
WoodCost 4 RoomArea * Price[WoodCholce]
// to store the relevant data in Quotations|[]
Quotations[CurrentCustomer, 1] ¢ RoomLength

Quotations[CurrentCustomer, 2] ¢« RoomWidth
Quotations [CurrentCustomer, 3] ¢ RoomArea
Quotations[CurrentCustomer, 4] ¢ WoodChoice
Quotations [CurrentCustomer, 5] ¢ WoodCost

// final output of quotation
QUTPUT "Customer names: ", Customers [CurrentCustomer]
QUTPUT "The wood you have chosen is: ",
WoodType [WoodCholce]
QUTPUT "Your total price is: ",
Cuotations[CurrentCustomer, 5]
// ready for next customer
CurrentCustomer < CurrentCustomer + 1
// resets CurrentCustomer to beginning of array when
Array
/4 limit reached
IF CurrentCustomer > 100
THEN
CurrentCustomer 4 1
ENDIF
ENDWHILE

8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
10 e AO2 (maximum 9 marks) 15
s AO3 (maximum 6 marks)
Data Structures required names shown underlined must be used as given in the scenario
2D Array or list Temperatures
Variables MaxDay, MinDay, AvDay, MaxWeek, MinWeek, BAvWeek
Requirements (techniques)
R1 Find maximum and minimum temperatures for each day and calculates the average daily temperature (searching,
totalling)
R2 Find maximum and minimum temperatures for week and calculates the average weekly temperature (nested
searching, totalling)
R3 outputs for each day name, the rounded values for maximum temperature, minimum temperatures and average
temperature. Outputs for the week the rounded values for maximum temperature, minimum temperatures and average
temperature (output with appropriate messages and rounded values)
Example 15-mark answer in pseudocode:
// meaningful identifier names and appropriate data structures to store the data required
DECLARE DayCounter, HourCounter : INTEGER
DECLARE AvDay, AvWeek, MaxDay, MinDay, MaxWeek, MinWeek : REAL
DECLARE DayTotal, WeekTotal : REAL
DECTLARE Day : STRING
CONSTANT Hours <« 24
CONSTANT Days < 7
Question Answer Marks
10 MaxWeek < -1000// initialise max and min temperatures and total for the week

MinWeek « 1000
WeekTotal <« 0

FOR DayCounter « 0 TO Days - 1
MaxDay <« -1000// initialise max and min temperatures and total for each day
MinDay <« 1000
DayTotal « 0
FOR HourCounter « 0 TO Hours - 1
DayTotal <« DayTotal + Temperatures (HourCounter, DayCounter)
// update total maximum and minimum
IF Temperatures (HourCounter, DayCounter) > MaxDay
THEN
MaxDay < Temperatures (HourCounter, DayCounter)
ENDIF
IF Temperatures (HourCounter, DayCounter) < MinDay
THEN
MinDay <« Temperatures (HourCounter, DayCounter)
ENDIF
NEXT HourCounter

CASE OF DayCounter // select message for day

0 : Day <« "Monday"

1 Day < "Tuesday"

2 Day < "Wednesday"
3 Day < "Thursday"
4 Day <« "Friday"

5 Day <« "Saturday"™
4] Day <« "Sunday"

ENDCASE

DayAverage <« DayTotal / Hours // output results for day
OUTPUT Day // Results from a day

OUTPUT "Maximum temperature ", MaxDay

OUTPUT "Minimum temperature ", MinDay

OUTPUT "Average temperature ", ROUND(DayAverage,2)

8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
10 IF MaxDay > MaxWeek // update total maximum and minimum
THEN
MaxWeek <« MaxDay
ENDIF
IF MinDay > MinWeesk
THEN
MinWeek <« MinDay
ENDIF
WeekTotal <« WeekTotal + DayTotal // update total for week
NEXT DayCounter
WeekAverage <« WeekTotal / Days
QUTPUT "Maximum temperature for week ", MaxWeek// output results for week
OUTPUT "Minimum temperature for week ", MinWeek
OUTPUT "Average temperature for Week ", ROUND(WeekAverage,)

Question Answer Marks
11 Read the whole answer: 15
Check if each requirement listed below has been met. Requirements may be met using a suitable built-in function from the

programming language used (Python, VB.NET or Java).

On place a SEEN mark if requirement met, cross if no attempt seen, omission mark and/or comment if partially met (see

marked scripts).

Use the tables for AO2 and AO3 below to award a mark in a suitable band using a best fit approach, then add up the total:

¢ AO2 (maximum 9 marks)

¢ AO3 (maximum 6 marks)

Data structures required:

The names underlined must match those given in the scenario:

Arrays or lists Days|[], Readings|[], AverageTemp[]

Variables WeekLoop, DayLoop, InTemp, TotalDayTemp, TotalWeekTemp, AverageWesekTemp

Requirements (techniques):

R1 Input and store hourly temperatures and validation of input temperatures for each day (with prompts, range check and
(nested)iteration)

R2 Calculate, round to one decimal place and store daily average temperatures and calculate the weekly average
temperature rounded to one decimal place (iteration, totalling and rounding)

R3 Convert all average temperatures to Fahrenheit (to one decimal place) and output the average temperatures in both
Celsius and Fahrenheit. Qutput with appropriate messages. (output and rounding)

Question Answer Marks
" Example 15 mark answer in pseudocode
// meaningful identifiers and appropriate data structures for

// all data required

DECLARE Days : ARRAY[1:7] OF STRING
DECLARE Readings : ARRAY[1l:7, 1:24] OF REAL
DECLARE AverageTemp : ARRAY[1:7] OF REAL
DECLARE WeekLoop : INTEGER

DECLARE DayLocp : INTEGER

DECLARE InTemp : REAL

DECLARE TotalDayTemp : REAL

DECLARE TotalWeekTemp : REAL

DECLARE AverageWeekTemp : REAL

// initial population of Days[] array

// input and a loop are also acceptable

Days[1l] + "Sunday"
Days[2] 4 "Monday"
Days[3] < "Tuesday"
Days[4] < "Wednesday"
Days[5] 4 "Thursday"
Days[6] <« "Friday"
Days[7] <« "Saturday"

// input temperatures inside nested loop
FOR WeekLoop <« 1 TO 7

TotalDayTemp < 0

FOR DayLoop < 1 TO 24

OUTPUT "Enter temperature ", DayLoop, "

n

for ", Days|[WeekLoop]

8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
11 INPUT InTemp
// walidation of input for between -20 and +50 inclusive
WHILE InTemp < -20.0 OR InTemp > 50.0 DO
QUTPUT "Your temperature must be between -20.0 and +50.0 inclusive. Please try
again”
INPUT InTemp
ENDWHILE
Readings [WeekLoop, DayLoop] <« InTemp
// totalling of temperatures during the day
TotalDayTenp < TotalDayTemp + ROUND(InTemp, 1)
NEXT DayLoop
// average temperature for the day
AverageTemp [WeekLoop] < ROUND (TotalDayTemp / 24,1)
NEXT WeekLoop
// calculate the average temperature for the week
TotalWeekTemp <« 0
FOR WeekLoop « 1 TO 7
TotalWeekTemp <« TotalWeekTemp + AverageTemp [WeekLoop]
NEXT WeekLoop
AverageWeekTemp < ROUND (TotalWeekTemp / 7,1
// outputs in Celsius and Fahrenheit
FOR WeekLoop <« 1 TO 7
OUTPUT "The average temperature on ", Days[WeekLoop], " was ", AverageTemp[WeekLoop], "
Celsius and ",
ROUND (AverageWeekTemp * 9 / 5 + 32), 1, " Fahrenheit"
NEXT WeekLoop
OUTPUT "The average temperature for the week was ",
LverageWeekTemp," Celsius and ", ROUND(AverageWeekTemp * 9 / 5 + 32, 1),"
Fahrenheit"
Question Answer Marks
12 Read the whole answer: 15

Check if each requirement listed below has been met. Requirements may be met using a suitable built-in function from the
programming language used (Python, VB.NET or Java)

Mark SEEN cn script if requirement met, cross if no attempt seen, NE if partially met (see marked scripts).

Use the tables for AO2 and AQ03 below to award a mark in a suitable band using a best fit approach

Then add up the total.

Marks are available for:

¢ AO2 (maximum 9 marks)

¢ AO3 (maximum 6 marks)

Data Structures required names shown underlined must be used as given in the scenario
Arrays or lists Account, AccDetails
Variable size, AccountNumber

Requirements (techniques)

R1 Check account number and password (iteration and validation, selection, input, output)
R2 Display menu and make a selection (output, input and selection)

R3 Perform actions selected (use of arrays and procedures with parameters)

Example 15 mark answer in pseudocode
// Procedures to be called
PROCEDURE CheckDetails (AccID : INTEGER)
DECLARE Name, Password : STRING // local variables
Valid <« FALSE
IF AccID <0 OR AccID > Size
THEN
OUTPUT "Invalid Account Number"
ELSE
OUTPUT "Please Enter Name "
INPUT Name
OUTPUT "Please Enter Password "
INPUT Password
IF Name <> Account[AccID,1] OR Password <> Account[RhccID,2]
THEN
QUTPUT "Invalid name or password"
ELSE

8 Programming [15 MARKS]

ANSWERS
12 Valid < True
ENDIF
ENDIF
ENDPROCEDURE
PROCEDURE Balance (AccID : INTEGER)
QUTPUT "Your balance is ", AccDetails[AccID, 1]
ENDPROCEDURE
PROCEDURE WithDrawal (AccID : INTEGER)
DECLARE Amount : REAL // local wvariable
REPEAT
OUTPUT "Please enter amount to withdraw "
INPUT Amount
IF Amount > AccDetails([RAccID, 3]
THEN
OUTPUT "Rmount greater than withdrawal limit"
ENDIF
IF Amount > AccDetails[AccID,2] + AccDetails[AccID, 1]
THEN
OUTPUT "Amount greater than cash available™
ENDIF
IF AEmount <= AccDetails[AccID,3] AND Amount < AccDetails[AccID, 2] +
AccDetails[AccID, 1]
THEN
AccDetails [AccID,1] <« AccDetails[AccID,1] - Amount
ENDIF
UNTIL Amount<= AccDetails[AccID,3] AND Amount > AccDetails[RccID, 2] +
AccDetails[AccID, 1] AND Amount > 0
ENDPROCEDURE
PROCEDURE Deposit (AccID : INTEGER)
DECLARE Amount : REAL // local wvariable
REPEAT
OUTPUT "Please enter a positive amount to deposit "
INPUT Amount
UNTIL Amount >0
AccDetails[AccID,1l] <« AccDetails[AccID,l] + Amount
12 ENDPROCEDURE

// Declarations of global variables for information - not required in candidate responses
DECLARE AccountNumber, Choice : INTEGER
DECLARE Valid, Exit : BOOLEAN

OUTPUT "Please enter your account number "
INPUT AccountNumber
CheckDetails (AccountNumber)

IF valid
THEN
REPEAT
OUTPUT "Menu"
OUTPUT "1. display balance"
QUTPUT "2. withdraw money”
OUTPUT "3. deposit money"
QUTPUT "4, exit"
OUTPUT "please choose 1, 2, 3 or 4"
INPUT Choice
CASE OF Choice
1 : Balance (AccountNumber)
2 Withdrawal (AccountNumber)
3 : Deposit (AccountNumber)
4 Exit « TRUE
OTHERWISE OUTPUT "Invalid choice™
ENDCASE
UNTIL Choice = 4
ELSE
QUTPUT "Invalid account number "
ENDIF

8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
11 Read the whole answer: 15
Check if each requirement listed below has been met. Requirements may be met using a suitable built-in function from the
programming language used (Python, VB.NET or Java).
Mark SEEN on script if requirement met, cross if no attempt seen, NE if partially met (see marked scripts).
Use the tables for A02 and A03 below to award a mark in a suitable band using a best fit approach.
Then add up the total.
Marks are available for:
¢ AO2 (maximum 9 marks)
s AO3 (maximum 6 marks)
Data structures required:
The names underlined must match those given in the scenario:
Arrays or lists Contacts][]
Variables Current8ize, Cont, Choice, NewContacts, Count, Count?2, Flag
Requirements (techniques):
R1 Output menu and input choice, with validation (range check, output with messages, input with prompts).
R2 Input number of new entries, within limits, update current size of contacts, input new data and sort the array (range
check, totalling, iteration and bubble sort).
R3 Output array whole contents and delete contents of array (iteration, output with labelling/messages, array initialisation).
Question Answer Marks
11 Example 15 mark answer in pseudocode

// meaningful identifiers and appropriate data structures for
// all data required

DECLARE Contacts : ARRAY[1:100, 1:2] OF STRING
DECLARE CurrentSize : INTEGER

DECLARE Cont : BOOLEAN

DECLARE Choice : INTEGER

DECLARE NewContacts : INTEGER

DECLARE Count : INTEGER

DECLARE CountZ : INTEGER

DECLARE Flag : BOOLEAN

DECLARE Templ : STRING

DECLARE Temp2 : STRING

// the number of contacts in the array
CurrentSize « 0

// to allow program to continue indefinitely

Cont < TRUE

WHILE Cont DO

// display menu
OUTPUT "Please choose one of the following:
CUTPUT "Press 1 to enter new contacts "
OUTPUT "Press 2 to display your contacts
OUTPUT "Press 3 to delete all contacts "
INPUT Choice

// walidate choice az 1, 2 or 3
WHILE Choice = 1 AND CurrentSize = 100 DO

n

"

CUTPUT "Your contacts are full, please enter 2 or 3"
INPUT Choice
ENDWHILE

WHILE Choice < 1 OR Choice > 3 DO
CUTPUT "Incorrect entry - please enter 1, 2, or 3"
INPUT Choice

ENDWHILE

11

Question

8 Programming [15 MARKS]
ANSWERS

// enter new contacts
IF Choice =1
THEN
OUTPUT "How many contacts (1 to 5 only)?"
INPUT NewContacts
// validates new contacts input
WHILE NewContacts < 1 OR NewContacts > 5 DO
OUTPUT "You may only enter between 1 and 5 contacts. Please try again"
INPUT NewContacts
ENDWHILE
// checks the maximum size is not exceeded
WHILE CurrentSize + NewContacts > 100
QUTPUT "Not enough space in your contacts"
OUTPUT "The maximum number you may input is ", 100 - CurrentSize
INPUT NewContacts
ENDWHILE
FOR Count < CurrentSize + 1 TO CurrentSize + NewContacts
QUTPUT "Enter the contact name as last name, first name"
INPUT Contacts[Count, 1]
OUTPUT "Enter the telephone number"
INPUT Contacts[Count, 2]
NEXT Count
CurrentSize < CurrentSize + NewContacts
// bubble sort to sort array if it contains 2 or more contacts
IF CurrentSize »>= 2
THEN
REFPEAT
Flag <« FALSE
FOR Count <« 1 TC CurrentSize-1
IF Contacts[Count + 1, 1] <
Contacts[Count, 1]
THEN
Flag < TRUE
Templ < Contacts|[Count, 1]
Temp2 < Contacts|[Count, 2]

Answer

Marks

11

Contacts[Count, 1] 4 Contacts[Count + 1, 1]
ontacts[Count, 2] 4 Contacts[Count + 1, 2]
ontacts[Count + 1, 1] < Templ
Contacts[Count + 1, 2] < TempZ

0

ENDIF
NEXT Count
UNTIL NOT Flag
ENDIF
ENDIF
// display all contacts
IF Choice = 2
THEN
IF CurrentSize > 0
THEN
QUTPUT "Name and Telephone Number"
FOR Count 4« 1 TO CurrentSize
OUTPUT Contacts[Count, 1], " ", Contacts[Count, 2]
NEXT Count
ENDIF
ENDIF
// delete all contacts
IF Choice = 3
THEN
FOR Count « 1 TO 100
FOR Count2 <« 1 TO 2
Contacts[Count, CountZ] <« "™
NEXT Count2
NEXT Count
ENDIF
ENDWHILE

8 Programming [15 MARKS]

ANSWERS
Question Answer Marks
11 Read and understand the question before starting to mark any scripts. Read the whole answer before marking a script: 15
Check if each requirement listed below has been met.
Requirements may be met using a suitable built-in function from the programming language used (Python, VB.NET or
Java)
On script if requirement met add seen, NE if partial attempt, cross if no attempt (see marked scripts).
[m] R1
[r2] R2
R3
Use the tables for A02 and A03 below to award a mark in a suitable band using a best fit approach, then add up the total.
Marks are available for: [- o
e AO2 (maximum 9 marks)
e AO3 (maximum 6 marks) &zl Al Tiexd
Data Structures required with names as given in the scenario
Arrays or lists Teamlame, TeamPoints
Variables LeagueSize, Matchlo
Requirements (techniques)
R1 calculates total points for all matches played by each team (nested iteration, totalling)
R2 counts and outputs, with the team’s name, for each team
the total number of away wins, home wins, drawn matches and lost matches
(nested iteration, counting, output)
R3 finds and outputs
the name of the team with the highest number of points and the name of the team with the lowest number of points.
(output, selection)
Question Answer Marks
11 Example 15-mark answer in pseudocode:

// meaningful identifier names and appropriate data structures to store the data required
DECLARE TeamCounter : INTEGER
DECLARE MatchCounter : INTEGER
FOR TeamCounter <« 1 to LeagueSize // zero totals for each club’s results
TotalPoints [TeamCounter] <« 0
NEXT TeamCounter

FOR TeamCounter <« 1 TO LeagueSize
AwayWinNo <« 0 // zero totals for each club’s result details
HomeWinNo < 0
DrawNo < 0
LostNo <« 0
FOR MatchCounter « 1 TO MatchNo
TotalPoints [TeamCounter] <« TotalPoints[TeamCounter] +
TeamPoints [TeamCounter, MatchCounter]
CASE OF TeamPoints[TeamCounter, MatchCounter]
3 : AwayWinNo <« AwayWinNo + 1
2 : HomeWinNo < HomeWinNo + 1
1 : DrawNo < DrawNo + 1
0 : LostNo < LostNo + 1
ENDCASE
NEXT MatchCounter

QUTEPUT "Team ", TeamName |[TeamCounter // Output details of a team’s results
OUTPUT "Total points ", TotalResult[TeamCounter]

OUTPUT "Away wins ", AwayWinNo

QUTPUT "Home wins ", HomeWinNo

OUTPUT "Draws ", DrawNo

OUTPUT "Losses ", LostNo

8 Programming [15 MARKS]
ANSWERS

Question

Answer

Marks

11

// Check for highest and lowest results
IF TeamCounter =
THEN
HighestResult < TotalPoints[TeamCounter]
LowestResult < TotalPoints [TeamCounter]
ENDIF

IF TotalPoints[TeamCounter] > HighestResult
THEN
HighestResult < TotalPoints|[TeamCounter]
TopTeam < TeamCounter
ENDIF
IF TotalPoints[TeamCounter] < LowestResult
THEN
LowestResult <« TotalPoints [TeamCounter]
BottomTeam < TeamCounter
ENDIF

NEXT TeamCounter
// output names of the teams with the highest and lowest number

OUTPUT "Top Team ", TeamName [TopTeam]
QUTPUT "Bottom Team ", TeamName [BottomTeam]

of points

