IGCSE Edexcel Chemistry Revision

Revision Guide Section 3: Equations and Calculations

Paper 1 [All Pathways]

Please note, these questions may have parts related to **other** topics within the GCSE Chemistry course. However, all questions are related at least in part to Equations and Calculations.

Questions taken from 2019 and 2020 January, June and November Papers (C and CR)

- 6 questions
- 77 marks
- Recommended time for all questions: 85 minutes (just over 1 minute per mark)

 A student uses the reaction between zinc and dilute sulfuric acid to prepa some zinc sulfate crystals. 	re
(a) (i) Complete the equation for this reaction by giving the correct state sym	bols. (1)
Zn () + H ₂ SO ₄ () → ZnSO ₄ () + H ₂ ())
(ii) State what would be observed during this reaction.	(1)
	•••••
(b) The student adds excess zinc to a beaker of dilute sulfuric acid.	
(i) Explain why it is necessary to add excess zinc.	(2)
	•••••
(ii) Draw a diagram of the apparatus the student should use to remove the unreacted zinc and collect the zinc sulfate solution.	e (2)

- (c) The student obtains a pure, dry sample of zinc sulfate crystals. The formula of zinc sulfate crystals is $ZnSO_4.7H_2O$
 - (i) Calculate the relative molecular mass (M_r) of zinc sulfate crystals. (2)

*M*_r =

(ii) The student uses 0.0200 mol of dilute sulfuric acid in her preparation.
 Show that the maximum mass of zinc sulfate crystals that the student could obtain is about 6 g.

(iii) The student obtains a mass of 4.28 g of zinc sulfate crystals.Calculate the percentage yield of the zinc sulfate crystals.Give your answer to three significant figures. (3)

percentage yield =%

(Total for question = 13 marks)

- 2. This question is about the reduction of metal oxides.
- (a) Solid oxides of copper can be reduced by reacting them with methane gas.
 Complete the equation for the reaction between copper(II) oxide and methane.
 Include state symbols.
 (2)

.....CuO(.....) +CH₄(.....) →Cu(.....) +CO₂(.....) +H₂O(.....)

(b) A teacher uses this apparatus to demonstrate the reaction between a different oxide of copper and methane.

(i) The teacher heats the oxide of copper until the reaction is complete. The table shows the teacher's results.

	Mass in g
empty weighing boat	15.05
weighing boat + oxide of copper	18.63
weighing boat + copper	18.23

Use the teacher's results to show that the empirical formula of this oxide of copper is Cu_2O (4)

(ii) The teacher wears safety glasses and a lab coat during the demonstration.Give one other safety precaution that she should take.(1)

.....

(c) Iron forms when iron(III) oxide is heated with carbon. The equation for the reaction is

$Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$

(i) State how the equation shows that iron(III) oxide is reduced.
 (1)
 (ii) State why carbon monoxide should not be released into the atmosphere.(1)
 (iii) Calculate the maximum mass, in tonnes, of iron that can be produced when 30.0 tonnes of iron(III) oxide are reacted with an excess of carbon.
 [1 tonne = 1.0 × 10⁶ g]
 (4)

mass = tonnes

(iv) A mixture of 25 000 mol of iron(III) oxide and 840 000 g of carbon is heated. Use this equation to show that the iron(III) oxide is in excess. $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ (2)

(Total for question = 15 marks)

3.	•	NO3) is used in the production of fertilisers. manufactured in three stages.	
	Stage 1	ammonia reacts with oxygen in the presence of a platinum catalyst to produce nitrogen monoxide gas, NO, and water.	
	Stage 2	nitrogen monoxide gas reacts with more oxygen to produce nitrogen dioxide gas, NO $_2$.	
	Stage 3	nitrogen dioxide gas reacts with water to produce nitric acid and more nitrogen monoxide gas.	
(a)) (i) Complete	the chemical equation for the reaction in stage 1.	(1)
		$NH_3 + \dots O_2 \rightleftharpoons NO + \dots H_2O$	
	(ii) Give the r	neaning of the symbol \Rightarrow	(1)
••••			•••••
••••			•••••
	(iii) State the	purpose of the platinum catalyst.	(1)
••••			
••••			
(b)		cal equation for the reaction of nitrogen monoxide and oxyger	۱in
	stage 2.		(1)

(c) (i) The equation for the reaction in stage 3 is $3NO_2 + H_2O \rightarrow 2HNO_3 + NO$

Calculate the maximum mass, in tonnes, of nitric acid that could be produced in this reaction from 11.5 tonnes of nitrogen dioxide. [1 tonne = 1.0×10^{6} g] (4)

percentage yield = % (Total for question = 12 marks) Sodium hydrogencarbonate (NaHCO₃) is also known as baking soda. Baking soda can be used to make cakes increase in size in an oven. This is the equation for the reaction that takes place when baking soda is heated. 2NaHCO₃(s) → Na₂CO₃(s) + CO₂(g) + H₂O(g)

(1)

- A combustion
 B decomposition
 C oxidation
 D reduction

 (ii) Suggest why the reaction makes the cakes increase in size. (1)
- (b) A student uses this apparatus to investigate the reaction that takes place when sodium hydrogencarbonate is heated.

This is the student's method.

(a) (i) What type of reaction is this?

- weigh a crucible and record the mass
- add some sodium hydrogencarbonate to the crucible, reweigh it and record the mass
- heat the crucible and contents for five minutes, then allow to cool before weighing and recording the mass
- heat the crucible and contents again for a further three minutes, then allow to cool before weighing and recording the mass

(i) Give a reason why the crucible and contents are heated for a further thre minutes.	(1)
(ii) The student considered using a lid on the crucible in the experiment. Suggest an advantage and a disadvantage of using a lid on the crucible.	(2)
Advantage	
Disadvantage	

(c) The table shows some of the student's results.

mass of crucible and sodium hydrogencarbonate in g	29.75
mass of empty crucible in g	26.50

(i) Calculate the mass of sodium hydrogencarbonate that the student uses. (1)

mass =g

(ii) Using this equation, calculate the maximum mass of sodium carbonate (Na₂CO₃) that could form in the student's reaction. $2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$

 $[M_r \text{ of } NaHCO_3 = 84 \qquad M_r \text{ of } Na_2CO_3 = 106$ (3)

(d) In a second experiment, the student uses a larger mass of sodium hydrogencarbonate.
 She calculates that she should obtain 4.8 g of sodium carbonate.
 She actually obtains 4.2 g of sodium carbonate.

(i) Calculate the percentage yield from the student's experiment. (2)

•••••				
	(ii) Other than spillages, suggest a possible reas yield is less than expected.	son why the s	tudent's ac	ctual (1)
	percentage	yield =		%

(Total for question = 12 marks)

5. The boxes show the displayed formulae of six organic compounds, P, Q, R, S, T and U.

(d) This is the displayed formula of an alkene, V.

(i) Give the name of alkene V.	(1)
	fallenall

(ii) Draw the displayed formula of another alkene that is an isomer of alkene V. (1)

(e) An organic compound has the percentage composition by mass $C=36.36\% \quad H=6.06\% \quad F=57.58\%$

(i) Show that the empirical formula of the compound is CH_2F (2)

(ii) The relative molecular mass (M_r) of the compound is 66.	
Determine the molecular formula of the compound.	(2)

molecular formula =

(Total for question = 14 marks)

6.

(a) The diagram shows the displayed formula of the organic compound methanol, $\ensuremath{\mathsf{CH}_3\mathsf{OH}}$

(i) Determine the number of atoms in one molecule of methanol.	(1)
(ii) State why methanol is not a hydrocarbon.	(1)
(b) The atoms in methanol are held together by covalent bonds.(i) State what is meant by the term covalent bond.	(2)
	•••••
	•••••
	•••••
	•••••

 (ii) Draw a dot-and-cross diagram to show the bonding in a molecule of methanol.
 Show only the outer electrons of each atom.

(c) Another organic compound has the percentage composition by mass C = 38.7% H = 9.7% O = 51.6%

(i) Calculate the empirical formula of this compound. (3)

empirical formula =

(ii) The relative molecular mass (*M*_r) of the compound is 62
 Determine the molecular formula of the compound.
 (2)

molecular formula =

(Total for question = 11 marks)

(2)

END OF QUESTIONS

Mark Scheme

Q1.

Dumber (a) Image: Construct on the second of the seco	Q1.			
(a) (i) $Zn \{3\} + H_2SO_1\{aq\} \rightarrow ZnSO_1\{aq\} + H_2\{g\}$ ACCEPT upper case latters (ii) offervescence/bubbles/fizzing ACCEPT sinc gets smaller or disappears (b) (i) An explanation that links the following two points ACCEPT zinc gets smaller or disappears (b) (i) An explanation that links the following two points ACCEPT zinc gets smaller or disappears (b) (i) An explanation that links the following two points ACCEPT zinc gets smaller or disappears (ii) An explanation that links the following two points ACCEPT zinc gets smaller or disappears 2 (iii) M1 to make sure all of the acid reacts M2 dop on a filter funnet container to collect filtrate o.g. beaker, conical flask, evaporating basin M2 dop on a filter funnet working scores 2 (iii) M1 flask, evaporating basin correct answer (5.74) without working scores 2 2 (iii) • setting out of calculation corract answer (5.74) without working scores 2 2 (iii) • multiply moles by $M_{\rm e}$ • evaluation 2 2 Example calculation M1 (mass of ZnSO_0.7H_0 =) 287 x 0.02(00) ALLOW ecf from (i) 2 (iii) M1 4.28+5.74 OR 0.7456 correct answer to 3 sig fig swithout working scor		Answer	Notes	Marks
(b) (i) An explanation that links the following two points MI to make sure all of the acid reacts M2 (so that) a pure zinc sulfate solution is obtained/pure zinc sulfate solution is obtained/pure zinc sulfate solution is obtained/pure zinc sulfate solution is obtained/pure zinc sulfate crystals are obtained OWTTE M2 dop on a filter funnel in M1 (ii) M1 filter funnel containing filter paper M2 sultable container to collect filtrate e.g. beaker, conical flask, evaporating basin M2 dop on a filter funnel in M1 (iii) • sotting out of calculation • ovaluation Example calculation M1 for 2 2 + (4 x 16) + (7 x 18) M2 287 Notes Market Market (ii) • multiply moles by M • ovaluation Example calculation M1 (mass of Zn50, 7H ₀ O =) 287 x 0.02(00) M1 (mass of Zn50, 7H ₀ O =) 5.74 (g) Correct answer (5.74) without working scores 2 2 Z (iii) M1 4.28-5.74 OR 0.7456 Correct answer to 3 sig fig greator than 1 ALLOW use of fog giving and ALLOW use of fog giving and and for the sub of the sub a sig figs to score M3		$Zn (s) + H_2SO_4 (aq) \rightarrow ZnSO_4 (aq) + H_2 (g)$		1
M1 to make sure all of the acid reacts M2 (so that) a pure zinc sulfate crystals are obtained (ii) M1 filter funnel containing filter paper M2 sultable container to collect filtrate e.g. beaker, conical flask, evaporating basin M2 dep on a filter funnel in M1 (iii) M1 filter funnel containing filter paper M2 dep on a filter funnel in M1 (iii) M1 filter funnel containing filter paper M2 dep on a filter funnel in M1 (iii) M1 filter funnel containing filter paper M2 dep on a filter funnel in M1 (c) (i) • setting out of calculation correct answer without working scores 2 (c) (i) • setting out of calculation correct answer (5.74) without working scores 2 (ii) • multiply moles by M correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M correct answer (5.74) without working scores 3 3 (iii) • multiply moles by M correct answer (5.74) without working scores 3 3 (iii) M1 (mass of Zn50, .7H_2O =) 287 x 0.02(00	(ii)	effervescence/bubbles/fizzing	or disappears IGNORE hydrogen / gas	1
M2 (so that a pure zinc sulfate solution is obtained/pure zinc sulfate crystals are obtained OWTTE M1 filter funnel containing filter paper Z (ii) M1 filter funnel containing filter paper M2 dep on a filter funnel in M1 M2 dep on a filter funnel in M1 (iii) M1 filter funnel containing filter paper M2 dep on a filter funnel in M1 M1 (iii) M1 filter funnel containing filter paper M2 dep on a filter funnel in M1 M1 (c) (i) • setting out of calculation correct answer without working scores 2 Marks (c) (i) • setting out of calculation correct answer (5.74) Z (ii) • multiply moles by M correct answer (5.74) Z (iii) • multiply moles by M correct answer (5.74) Z (iii) • multiply moles by M correct answer (5.74) Z (iii) • multiply moles by M correct answer (5.74) Z (iii) • multiply moles by M correct answer (5.74) Z (iii) • multiply moles by M correct answer (5.74) Z (iii) • multiply moles by M correct answer (5.74) Z (iiii) • multiply moles by M	(b) (i)	An explanation that links the following two points		2
(ii) M1 filtor funnol containing filtor papor M2 suitable containor to collect filtrate e.g. M2 dop on a filtor funnol in M1 Question number Answer M2 dop on a filtor funnol in M1 (c) (i) • sotting out of calculation e.g. M2 dop on a filtor funnol in M1 (c) (i) • sotting out of calculation e.g. Corroct answer without working scores 2 (ii) • sotting out of calculation corroct answer without working scores 2 2 (ii) • multiply moles by M _t corroct answer (5.74) without working scores 2 2 (ii) • multiply moles by M _t corroct answer (5.74) without working scores 2 2 (iii) • multiply moles by M _t corroct answer (5.74) without working scores 2 2 (iii) • multiply moles by M _t corroct answer (5.74) without working scores 2 2 (iii) • multiply moles by M _t corroct answer to 3 sig figs without working scores 2 3 (iii) • multiply moles by M _t corroct answer to 3 sig figs without working scores 3 3 (iii) M1 (azs of ZnSO4.7H ₂ O =) 287 × 0.02(00) ALLOW ecf from (i) 3 M2 (mass of ZnSO4.7H ₂ O =) 5.74 (g) corroct answor to 3 sig figs without working scores 3 <td></td> <td>M1 to make sure all of the acid reacts</td> <td></td> <td></td>		M1 to make sure all of the acid reacts		
M2 suitable containor to collect filtrate e.g. beaker, conical flask, evaporating basin M2 dop on a filter funnel in M1 Question Answer Notes Marks (c) (i) • setting out of calculation correct answer without working scores 2 2 (c) (i) • setting out of calculation correct answer without working scores 2 2 (c) (i) • setting out of calculation correct answer (5.74) 2 (ii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 2 (iii) • multiply moles by M. correct answer (5.74) 3 (iiii) M1 (mass of Zn50, 7H_0 =) 287		obtained/pure zinc sulfate crystals are obtained		
M2 suitable container to collect filtrate e.g. beaker, conical flask, evaporating basin M2 dop on a filter funnel in M1 Question number Answer Notes Marks (c) (i) • setting out of calculation evaluation correct answer without working scores 2 2 (c) (i) • setting out of calculation correct answer without working scores 2 2 (ii) • multiply moles by M. correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M. correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M. correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M. correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M. correct answer (5.74) without working scores 2 2 (iii) • multiply moles by M. correct answer (5.74) without working scores 2 3 (iii) • multiply moles by M. correct answer (5.74) without working scores 3 3 (iii) M1 (mass of Zn50, 7H_0 =) 287 x 0.02(00) ALLOW ecf from (i) 3 M2 (mass of Zn50, 7H_0 =) 5.74 (g) correct answer to 3 sig fig swithout working scores 3 3 (iiii	(ii)	M1 filter funnel containing filter paper		2
number Notes Marks (c) • setting out of calculation • evaluation correct answer without working scores 2 2 Example calculation M1 65 + 32 + (4 x 16) + (7 x 18) correct answer (5.74) 2 (ii) • multiply moles by Mr correct answer (5.74) 2 (iii) • multiply moles by Mr correct answer (5.74) 2 (iii) • multiply moles by Mr correct answer (5.74) 2 Example calculation M1 (mass of ZnSO4.7HzO =) 287 x 0.02(00) ALLOW ecf from (i) 2 M2 (mass of ZnSO4.7HzO =) 5.74 (g) correct answer to 3 sig figs without working scores 3 3 (iii) M1 4.28+5.74 OR 0.7456 correct answer to 3 sig fig greater than 1 3 M2 0.7456 × 100 ALLOW any number of sig fig greater than 1 3 M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total	()	M2 suitable container to collect filtrate e.g.		
number Notes Marks (c) • setting out of calculation • evaluation correct answer without working scores 2 2 Example calculation M1 65 + 32 + (4 x 16) + (7 x 18) correct answer (5.74) 2 (ii) • multiply moles by Mr correct answer (5.74) 2 (iii) • multiply moles by Mr correct answer (5.74) 2 (iii) • multiply moles by Mr correct answer (5.74) 2 Example calculation M1 (mass of ZnSO4.7HzO =) 287 x 0.02(00) ALLOW ecf from (i) 2 M2 (mass of ZnSO4.7HzO =) 5.74 (g) correct answer to 3 sig figs without working scores 3 3 (iii) M1 4.28+5.74 OR 0.7456 correct answer to 3 sig fig greater than 1 3 M2 0.7456 × 100 ALLOW any number of sig fig greater than 1 3 M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total				
number correct answer without 2 (c) (i) • setting out of calculation correct answer without working scores 2 2 Example calculation M1 65 + 32 + (4 × 16) + (7 × 18) working scores 2 2 (ii) • multiply moles by Mr correct answer (5.74) 2 (iii) • multiply moles by Mr correct answer (5.74) 2 (iii) • multiply moles by Mr correct answer (5.74) 2 Example calculation M1 (mass of ZnSO4.7H2O =) 287 × 0.02(00) ALLOW ecf from (i) 2 M2 (mass of ZnSO4.7H2O =) 5.74 (g) correct answer to 3 sig figs without working scores 3 3 (iii) M1 4.28+5.74 OR 0.7456 correct answer to 3 sig figs ores 3 3 M2 0.7456 × 100 ALLOW any number of sig fig greater than 1 3 3 M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total		Answer	Notor	Marks
 evaluation evaluation Example calculation M1 65 + 32 + (4 × 16) + (7 × 18) M2 287 (ii) multiply moles by Mr evaluation Example calculation M1 (mass of ZnSO₄.7H₂O =) 287 × 0.02(00) M1 (mass of ZnSO₄.7H₂O =) 5.74 (g) M1 4.28+5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 ALLOW ecf from (i) ALLOW use of 6g M2 0.7456 × 100 M3 74.6 M3 74.6 				2
M1 65 + 32 + (4 x 16) + (7 x 18) correct answer (5.74) M2 287 evaluation (ii) multiply moles by Mr • evaluation correct answer (5.74) Example calculation M1 (mass of ZnSO ₄ .7H ₂ O =) 287 x 0.02(00) M1 (mass of ZnSO ₄ .7H ₂ O =) 5.74 (g) ALLOW ecf from (i) (iii) M1 4.28+5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 ALLOW use of 6g M2 0.7456 × 100 M3 74.6 Total	., .,			
M2 287 • multiply moles by Mr correct answer (5.74) without working scores 2 Example calculation M1 (mass of ZnSO ₄ .7H ₂ O =) 287 x 0.02(00) ALLOW ecf from (i) M2 (mass of ZnSO ₄ .7H ₂ O =) 5.74 (g) Correct answer to 3 sig figs without working scores 3 (iii) M1 4.28+5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 MLLOW use of 6g MLLOW use of 6g M2 0.7456 × 100 ALLOW any number of sig fig greater than 1 M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total		Example calculation		
(ii) • multiply moles by Mr correct answer (5.74) without working scores 2 2 Example calculation M1 (mass of ZnSO ₄ .7H ₂ O =) 287 x 0.02(00) ALLOW ecf from (i) 3 M2 (mass of ZnSO ₄ .7H ₂ O =) 5.74 (g) Correct answer to 3 sig figs without working scores 3 3 (iii) M1 4.28÷5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 3 M1 4.28÷5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 3 M1 4.28÷5.74 OR 0.7456 correct answer to 3 sig figs without working scores 7 3 M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total		M1 65 + 32 + (4 x 16) + (7 x 18)		
evaluation evaluation without working scores 2 Example calculation M1 (mass of ZnSO ₄ .7H ₂ O =) 287 x 0.02(00) M2 (mass of ZnSO ₄ .7H ₂ O =) 5.74 (g) (iii) M1 4.28÷5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 ALLOW ecf from (ii) ALLOW use of 6g M2 0.7456 × 100 ALLOW use of 6g M2 0.7456 × 100 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total		M2 287		
M1 (mass of ZnSO ₄ .7H ₂ O =) 287 x 0.02(00) ALLOW ecf from (i) M2 (mass of ZnSO ₄ .7H ₂ O =) 5.74 (g) correct answer to 3 sig figs without working scores 3 M1 4.28÷5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 M2 0.7456 × 100 ALLOW use of 6g M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3	(ii)		without working scores	2
M2 (mass of ZnSO ₄ .7H ₂ O =) 5.74 (g) correct answer to 3 sig figs without working scores 3 3 M1 4.28+5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 3 ALLOW ecf from (ii) ALLOW use of 6g ALLOW use of 6g 3 M2 0.7456 × 100 ALLOW use of 6g giving answer of 71.3 3 M3 74.6 ALLOW use of 6g giving answer of 71.3 3 Must be 3 sig figs to score M3 Total		Example calculation		
M2 (mass of ZnSO ₄ .7H ₂ O =) 5.74 (g) correct answer to 3 sig figs without working scores 3 3 M1 4.28÷5.74 OR 0.7456 correct answer to 3 sig figs without working scores 3 3 ALLOW ecf from (ii) ALLOW use of 6g ALLOW use of 6g 3 M2 0.7456 × 100 ALLOW use of 6g giving answer of 71.3 3 M3 74.6 ALLOW use of 6g giving answer of 71.3 3 Must be 3 sig figs to score M3 Total		M1 (mass of ZnSQ., ZH-Q =) 287 x 0.02(00)	ALLOW ecf from (i)	
figs without working scores 3 ALLOW ecf from (ii) ALLOW use of 6g M2 0.7456 × 100 ALLOW any number of sig fig greater than 1 M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3				
M2 0.7456 × 100 ALLOW use of 6g M3 74.6 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total	(iii)	M1 4.28÷5.74 OR 0.7456	figs without working scores 3	3
M3 74.6 Sig fig greater than 1 ALLOW use of 6g giving answer of 71.3 Must be 3 sig figs to score M3 Total				
answer of 71.3 Must be 3 sig figs to score M3 Tota		M2 0.7456 × 100		
		M3 74.6	answer of 71.3 Must be 3 sig figs to	
				Total 13

(Q07 4CH1/1CR, Nov 2020)

Q2.

•				
Question number		Answer	Notes	Marks
(a)		4 CuO (s)+ CH ₄ (g) \rightarrow 4 Cu (s)+ CO ₂ (g) + 2 H ₂ O (l/g)	ALLOW multiples and fractions	2
		M1 correct balancing		
		M2 correct state symbols		
(b)	(i)	M1 Mass copper 3.18g and mass oxygen 0.40g		4
		M2 Moles copper = 3.18/63.5 OR 0.0500 moles		
		M3 Moles oxygen = 0.40/16 OR 0.025 moles	M2 and M3 allow ecf from M1	
		M4 Ratio of moles Cu:O is 2:1	M4 is dep on M2 and M3	
	(ii)	Any one from:		1
		M1 Use a safety screen	ALLOW tie hair back	
		M2 Position the class some distance from the apparatus	ALLOW wear heat-proof gloves	
		M3 Do the experiment in a fume cupboard		
		M4 Set fire to the (excess) methane gas straight		
		away		
	(c)(i)	(Iron (III) oxide) loses oxygen	ALLOW iron loses	1
			oxygen IGNORE any reference to electrons.	
	(ii)	Carbon monoxide is poisonous / toxic OR carbon monoxide reduces the ability of the blood to carry oxygen	ALLOW carbon monoxide binds to haemoglobin in the blood	1
	(iii)	 calculate M_r of Fe₂O₃ calculate the amount, in moles, of Fe₂O₃ calculate the amount, in moles, of Fe calculate the mass in tonnes of Fe 	Correct answer of 21 tonnes scores 4 marks with or without working	4
		Example calculation	ALLOW ecf from M1 (incorrect M _r)	
		M1 M_r of Fe ₂ O ₃ = 160		
		M2 n(Fe ₂ O ₃) = 30.0 x 10 ⁶ ÷ 160 OR 187,500 moles	ALLOW working in megamoles ALLOW ecf from M1	
		M3 n(Fe) = 187,500 x 2 OR 375,000 moles	ALLOW working in megamoles ALLOW ECF from M2	
		M4 375,000 x 56 = 21 tonnes	ALLOW ecf from M3	
	(iv)	M1 840,000g is 70,000 moles of carbon		2
		M2 therefore need 23,333 moles Fe_2O_3 (but we have 25,000 which is an excess)		
		OR		
		M1 Need 75,000 moles carbon		
		M2 900,000g of carbon is needed (and have 840,000g of carbon so iron(III) oxide is in excess as carbon is the limiting reactant)		
		OR		
		M1 need 75,000 moles of carbon		
		M2 have 840,000÷12 OR 70,000 moles of carbon (so iron(III) oxide is in excess as carbon is the limiting reactant)		
		7		

Questio		Answer	Notes	Mark
(a)	(i)	4 NH ₃ + 5 O ₂ ≈ 4 NO + 6 H ₂ O	ACCEPT multiples and fractions	1
	(ii)	reversible (reaction)	ACCEPT reaction that goes both ways / both forwards and backwards reactions occur	
			IGNORE references to equilibrium	1
	(iii)	to increase the rate of the reaction / to speed up the reaction OWTTE	IGNORE references to lowering the activation energy	1
(b)		$2110 + O_2 \rightarrow 211O_2$	ACCEPT multiples and fractions	1
(c)	(i)	 calculate M_r of NO₂ and HNO₃ calculate the amount, in moles, of NO₂ calculate the amount, in moles, of HNO₃ calculate the mass in tonnes of HNO₃ 		
		Example calculation		
		M1 M_r of NO ₂ = 46 M_r of HNO ₃ = 63		
		M2 $n(NO_2) = 11.5 \times 10^6 \div 46$ OR 250 000 (mol)	ALLOW working in megamoles i.e. 11.5 ÷ 46 OR 0.25	
			ALLOW ECF from incorrect Mr of NO_2	
		M3 $n(\text{HNO}_3) = \frac{2 \times 250000}{3}$ OR 167 000 / 170 000	calculator answer 166666.66 ALLOW working in megamoles i.e. $\frac{2 \times 0.25}{3}$ OR 0.167 / 0.17	
			ALLOW ECF from M2	
		M4 (167 000 x 63 g) = 10.5 (tonnes)	10.5 (tonnes) with no working scores 4	
			ACCEPT 10.7 (if 170 000 used)	
			ALLOW ECF from M3 ALLOW ECF from incorrect M _r of HNO ₃	
	(ii)	can be (re)used in stage 2 / to make more nitrogen dioxide (in stage 2) / can be used to make more nitric acid	IGNORE can be recycled/reused unless qualified	

Question number	Answer	Notes	Marks
(d)	 calculate the amount, in moles, of copper(II) nitrate calculate the theoretical yield, in moles, of copper(II) nitrate calculate the percentage yield 		
	Example calculation M1 n Cu(NO ₃) ₂ formed = 15.3 \div 187.5 OR 0.0816	ALLOW 0.082	
	M2 theoretical <i>n</i> Cu(NO ₃) ₂ = 0.200 ÷ 2 OR 0.100		3
	M3 (% yield) = (0.0816×100) = 81.6 (%) (0.100)	ACCEPT 82 (%)	
		Mark M3 CSQ on M1 and M2	
		40.8 scores 2	
	Alternative method calculate the theoretical yield, in moles, of copper(II) nitrate calculate the theoretical mass of copper nitrate that should be formed calculate the percentage yield 		
	Example calculation		
	M1 theoretical <i>n</i> Cu(NO ₃) ₂ = 0.200 ÷ 2 OR 0.100		
	M2 theoretical mass of copper nitrate = 0.1 x 187.5 = 18.75	ALLOW 18.8	
	M3 (% yield) = <u>15.3</u> x 100 = 81.6 (%) <u>18.75</u>	ACCEPT 82 (%)	
		Mark M3 CSQ on M1 and M2	
		40.8 scores 2	
		81.6(%) with no working scores 3 marks	
			Total 12

(Q10 4CH1/1C, Jan 2020)

Q4.

Question number	Answer	Notes	Marks
(a) (ī)	B decomposition A is not correct because when sodium hydrogencarbonate is heated combustion does not take place C is not correct because when sodium hydrogencarbonate is heated oxidation does not take place D is not correct because when sodium hydrogencarbonate is heated reduction does not take place		1 comp
(ii)	(because) carbon dioxide/gas is produced/given off		1 grad
(b) (i)	to obtain a constant mass OWTTE / to show the reaction is complete OWTTE	ACCEPT to ensure only Na ₂ CO ₃ is left (in crucible) ACCEPT to ensure all the NaHCO ₃ has reacted /decomposed	1 exp
(ii)	M1 advantage: to stop any solid/Na ₂ CO ₃ /NaHCO ₃ spitting out/being lost M2 disadvantage: the gas(es)/CO ₂ /H ₂ O/steam could not easily escape OWTTE	REJECT references to stopping gases escaping	2 exp

Question	Answer	Notes	Marks
number (c) (i)	3.25 (g)		1
			exp
(ii)	 calculate moles of NaHCO₃ use equation to determine moles of Na₂CO₃ multiply by <i>M</i>_r to find mass of Na₂CO₃ 		3 exp
	Example calculation:		
	M1 3.25 ÷ 84 OR 0.0387 (mol)	mark CQ on (i)	
	M2 0.0387 ÷ 2 OR 0.01935 (mol)	ALLOW any number of sig figs except 1	
	M3 0.01935 x 106 = 2.05 (g)	2.05 (g) without working scores 3 marks	
	 OR use of equation to relate mass of NaHCO₃ to mass of Na₂CO₃ shows how to find mass of Na₂CO₃ using 3.25g NaHCO₃ 	4.1 (g) without working scores 2 marks	
	correct evaluation of answer		
	Example calculation:		
	M1 (2x84)/168 (g) NaHCO ₃ → 106 (g) Na ₂ CO ₃		
	M2 3.25 (g NaHCO₃)→ (106∻168) x 3.25 (g Na₂CO₃) M3 2.05 (g Na₂CO₃)	mark CQ on (i)	
		1	
(d) (i)	M1 percentage yield = 4.2÷4.8 OR 0.875 M2 = (0.875 x 100) = 87.5 (%)	ACCEPT 88 (%) Correct answer without working scores 2	2 grad
(ii)	any one from		1
	M1 sodium hydrogencarbonate was impure		grad
	M2 not all sodium hydrogencarbonate reacted/decomposed		
		Total Q = 12 marks	
		Total of - 12 Hidiks	

(Q09 4CH1/1C, Nov 2020)

Q5.

Question	Answer	Notes	Marks
number (a) (i)	S		1
(ii)	T and U		1
(iii)	U		1
(b)	A description that makes reference to the following		
	three points	ACCEPT Br ₂ (aq)	
	M1 (add) bromine water	- ()	
	M2 no chango / stays orango	ALLOW no reaction If initial colour of bromine water is given in M2 or M3 it must be correct -ALLOW any combination of orange/yellow/brown - but	
		penalise once only	
		If bromine given for M1 then in M2 and M3 allow any combination of red/orange/brown/yellow	
		M2 and M3 dep on bromine water/bromine in M1	
		If no reagent and correct M2 and M3 - score 1	
		if incorrect reagent and correct M2 and M3 score 0	
	M3 (bromine water) decolourised / changes (from orange) to colourless	IGNORE clear	
	orange) to colouriess	REJECT discoloured	
		ALLOW M1 acidified potassium manganate(VII) M2 no change/stays purple M3 decolourised / goes colourless	3
uestion	Answer	Notes	Marks
number (C)	Any two of the following points	Hotes	marks
	M1 (can be represented by a) general formula		
	$M2$ each member differs from the next by a CH_2		
	group OWTTE M3 (each member has) same functional group		
	M4 (each member has) similar/same chemical properties / similar/same (chemical) reactions	ACCEPT react in similar/same way	
	M5 trend in physical properties (between successive members)	ACCEPT named	
		physical property, e.g. boiling point	
			2
(d) (i)	but-1-ene	e.g. boiling point REJECT similar/same	
(d) (i)	but-1-ene	e.g. boiling point REJECT similar/same physical properties	2
		e.g. boiling point REJECT similar/same physical properties	
(ii)	but-1-ene Either H H H H	e.g. boiling point REJECT similar/same physical properties	
	Either	e.g. boiling point REJECT similar/same physical properties	
	Either H H H H H H - C - C = C - C - H I	e.g. boiling point REJECT similar/same physical properties ALLOW 1-butene ACCEPT cis or trans	
	Either H H H H H H H H H H	e.g. boiling point REJECT similar/same physical properties ALLOW 1-butene ACCEPT cis or trans	1

Question number	Answer	Notes	Marks
(e) (i)	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Example calculation	0 marks if division by atomic numbers or upside down calculation	
	M1 C H F <u>36.36 6.06 57.58</u> 12 1 19		
	M2 <u>3.03</u> <u>6.06</u> <u>3.03</u> 3.03 3.03 3.03		
	OR 1 2 1		2
(ii)	 divide relative molecular mass by empirical formula mass correct molecular formula 		
	Example calculation		
	M1 $\frac{66}{12+2+19}$ OR $\frac{66}{33}$ OR 2		
	M2 C ₂ H ₄ F ₂	ACCEPT symbols in any order	
		correct answer without working scores 2 marks.	2
		2CH ₂ F scores 1	
			Total 14

(Q05 4CH1/1C, Jan 2020)

Question number	Answer	Notes	Marks
(a) (i)	6/six		1
(ii)	One of the following two points		1
	methanol/it) does not contain only carbon and hydrogen		
	OR (methanol/it) contains (an atom of) oxygen		
(b) (i)	M1 two/ pair of electrons		2
	M2 shared between two atoms	ACCEPT (electrons)	
		attracted to the nuclei (of the two atoms in the	
		bond)	
		ACCEPT M1 (electrostatic)	
		attraction between two nuclei	
		M2 (and the) shared pair(s) of electrons	
		(between them)	
(ii)	M1 4 pairs of electrons around central carbon atom,	ALLOW any combination	2
(1)	with one pair to O and 3 pairs to H	of dots and crosses	2
	M2 rest of molecule fully correct	M2 DEP on M1	
		L1	
Question number	Answer	Notes	Mark
	Answer Divide percentages by relative atomic masses	0 marks if division by atomic numbers or	Mark
number	Divide percentages by relative atomic	0 marks if division by	Mark
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain	0 marks if division by atomic numbers or	Mark
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio	0 marks if division by atomic numbers or	Mark:
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation	0 marks if division by atomic numbers or	Mark:
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation	0 marks if division by atomic numbers or	Mark:
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation M1	0 marks if division by atomic numbers or	Mark:
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation M1 C H O <u>38.7 9.7 51.6 16 M2 <u>3.225 (3.225) 9.7 (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) </u></u>	0 marks if division by atomic numbers or upside-down calculation	Mark
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation M1 C H O <u>38.7 9.7 51.6</u> 12 1 16 M2 <u>3.225</u> 9.7 (3.225) (3.225) (3.225) (3.225) OR 1 3 1	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1	Mark
number	Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation M1 C H O <u>38.7 9.7 51.6 16 M2 <u>3.225 (3.225) 9.7 (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) (3.225) </u></u>	0 marks if division by atomic numbers or upside-down calculation	Mark:
number (c) (i)	$\begin{array}{c c} & \mbox{Divide porcentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ \hline \\ & \mbox{M1} \begin{array}{c} C & H & O \\ \hline & \mbox{38.7} & \mbox{9.7} & \mbox{51.6} \\ \hline & \mbox{12} & \mbox{9.7} & \mbox{51.6} \\ \hline \\ & \mbox{M2} & \mbox{3.225} & \mbox{9.7} & \mbox{3.225} \\ \hline & \mbox{(3.225)} & \mbox{9.7} & \mbox{3.225} \\ \hline & \mbox{(3.225)} & \mbox{9.7} & \mbox{3.225} \\ \hline \\ & \mbox{OR} & 1 & 3 & 1 \\ \hline \\ & \mbox{M3} CH_{3}O \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Mark:
number	$\begin{array}{c c} & \mbox{Divide porcentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ \hline \\ & \mbox{M1} \begin{array}{c} C & H & O \\ \hline & \mbox{38.7} & \mbox{9.7} & \mbox{51.6} \\ \hline & \mbox{12} & \mbox{9.7} & \mbox{51.6} \\ \hline \\ & \mbox{M2} & \mbox{3.225} & \mbox{9.7} & \mbox{3.225} \\ \hline & \mbox{(3.225)} & \mbox{9.7} & \mbox{3.225} \\ \hline & \mbox{(3.225)} & \mbox{9.7} & \mbox{3.225} \\ \hline \\ & \mbox{OR} & 1 & 3 & 1 \\ \hline \\ & \mbox{M3} CH_{3}O \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Mark
number (c) (i)	$\begin{array}{c cccc} & \mbox{Divide percentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ & \mbox{M1} & \mbox{C} & \mbox{H} & \mbox{O} \\ & \mbox{M2} & \mbox{Galaxies} \\ & \mbox{M3} & \mbox{CH}_{3} O \\ & \mbox{Divide relative molecular mass by empirical} \\ & \mbox{M3} & \mbox{CH}_{3} O \\ & \mbox{M3} & \mbox{CH}_{3} O \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Mark:
number (c) (i)	 Divide percentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation M1 C H O <u>38.7 9.7 51.6</u> 12 1 16 M2 <u>3.225 9.7 (3.225)</u> (3.225) (3.225) (3.225) OR 1 3 1 M3 CH₃O Divide relative molecular mass by empirical formula mass 	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Mark
number (c) (i)	 Divide porcentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation M1 C H O <u>38.7 9.7 51.6</u> 16 M2 <u>3.225 9.7 3.225</u> (3.225) (3.225) (3.225) OR 1 3 1 M3 CH₅O Divide relative molecular mass by empirical formula mass Write molecular formula Example calculation 	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Marks
number (c) (i)	$\begin{array}{c c} & \mbox{Divide porcentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ \hline \\ & \mbox{M1} \begin{array}{c} C & H & O \\ & \mbox{38.7} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{12} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{M2} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{OR} 1 & 3 & 1 \\ \hline \\ & \mbox{M3} \mbox{CH}_{5}O \\ & \mbox{Vrite relative molecular mass by empirical} \\ & \mbox{formula mass} \\ & \mbox{Write molecular formula} \\ \hline \\ & \mbox{Example calculation} \\ & \mbox{M1} \mbox{62} & \mbox{(= 2)} \\ & \mbox{31} & \mbox{(= 2)} \\ \hline \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Mark
number (c) (i)	 Divide porcentages by relative atomic masses Divide results by smallest value to obtain ratio Write empirical formula Example calculation M1 C H O <u>38.7 9.7 51.6</u> 16 M2 <u>3.225 9.7 3.225</u> (3.225) (3.225) (3.225) OR 1 3 1 M3 CH₅O Divide relative molecular mass by empirical formula mass Write molecular formula Example calculation 	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Mark
number (c) (i)	$\begin{array}{c c} & \mbox{Divide porcentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ \hline \\ & \mbox{M1} \begin{array}{c} C & H & O \\ & \mbox{38.7} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{12} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{M2} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{OR} 1 & 3 & 1 \\ \hline \\ & \mbox{M3} \mbox{CH}_{5}O \\ & \mbox{Vrite relative molecular mass by empirical} \\ & \mbox{formula mass} \\ & \mbox{Write molecular formula} \\ \hline \\ & \mbox{Example calculation} \\ & \mbox{M1} \mbox{62} & \mbox{(= 2)} \\ & \mbox{31} & \mbox{(= 2)} \\ \hline \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order ACCEPT symbols in any order Correct answer without	Mark
number (c) (i)	$\begin{array}{c c} & \mbox{Divide porcentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ \hline \\ & \mbox{M1} \begin{array}{c} C & H & O \\ & \mbox{38.7} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{12} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{M2} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{OR} 1 & 3 & 1 \\ \hline \\ & \mbox{M3} \mbox{CH}_{5}O \\ & \mbox{Vrite relative molecular mass by empirical} \\ & \mbox{formula mass} \\ & \mbox{Write molecular formula} \\ \hline \\ & \mbox{Example calculation} \\ & \mbox{M1} \mbox{62} & \mbox{(= 2)} \\ & \mbox{31} & \mbox{(= 2)} \\ \hline \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order	Mark
number (c) (i)	$\begin{array}{c c} & \mbox{Divide porcentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ \hline \\ & \mbox{M1} \begin{array}{c} C & H & O \\ & \mbox{38.7} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{12} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{M2} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{OR} 1 & 3 & 1 \\ \hline \\ & \mbox{M3} \mbox{CH}_{5}O \\ & \mbox{Vrite relative molecular mass by empirical} \\ & \mbox{formula mass} \\ & \mbox{Write molecular formula} \\ \hline \\ & \mbox{Example calculation} \\ & \mbox{M1} \mbox{62} & \mbox{(= 2)} \\ & \mbox{31} & \mbox{(= 2)} \\ \hline \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order ACCEPT symbols in any order Correct answer without	Marks
number (c) (i)	$\begin{array}{c c} & \mbox{Divide porcentages by relative atomic} \\ & \mbox{masses} \\ & \mbox{Divide results by smallest value to obtain} \\ & \mbox{ratio} \\ & \mbox{Write empirical formula} \\ \hline \\ & \mbox{Example calculation} \\ \hline \\ & \mbox{M1} \begin{array}{c} C & H & O \\ & \mbox{38.7} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{12} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{51.6} \\ & \mbox{M2} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{9.7} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{3.225} & \mbox{3.225} \\ & \mbox{OR} 1 & 3 & 1 \\ \hline \\ & \mbox{M3} \mbox{CH}_{5}O \\ & \mbox{Vrite relative molecular mass by empirical} \\ & \mbox{formula mass} \\ & \mbox{Write molecular formula} \\ \hline \\ & \mbox{Example calculation} \\ & \mbox{M1} \mbox{62} & \mbox{(= 2)} \\ & \mbox{31} & \mbox{(= 2)} \\ \hline \end{array}$	0 marks if division by atomic numbers or upside-down calculation M2 subsumes M1 ACCEPT symbols in any order ACCEPT symbols in any order Correct answer without	Total

(Q05 4CH1/1CR, Nov 2020)