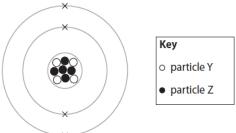
IGCSE Edexcel Chemistry Revision

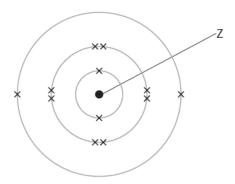
Revision Guide Section 2: The Periodic Table and Bonding

Paper 1 [All Pathways]


Please note, these questions may have parts related to **other** topics within the GCSE Chemistry course. However, all questions are related at least in part to The Periodic Table and Bonding.

Questions taken from 2019 and 2020 January and June Papers (C and CR)

6 questions 59 marks


Recommended time: 65 minutes

1. The diagram shows the particles in the atom of an element.

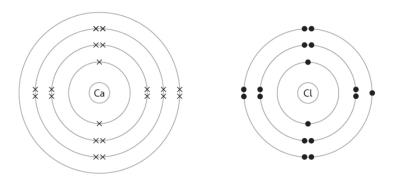
			×	
			is a proton.	(4)
		atis pa ⊠ A	article Z?	(1)
			an electron a molecule	
		■ B		
			a neutron	
		⊠ D	a nucleus	
	(b) Whi	ich of t	these has the smallest mass?	(1)
		□ A	an electron	
		В	a neutron	
		□ C	a nucleus	
		⊠ D	a proton	
	(c) Wh	at is th	ne mass number of this atom?	(1)
	(0)		4	(· /
		□ A	5	
		□ C	9	
		□ D	13	
	(a) \\/b	ot io th	o atomic number of this atom?	(1)
	` '	atistii ⊠ A	e atomic number of this atom? 4	(1)
			5	
		B C C C C C C C C C	9	
		⊠ D	13	
			13	
(e)	(i) Iden	tify th	e element that contains this atom.	(1)
	•••••	••••••		
	(ii) Sta	te wha	t is formed when this atom loses its outer shell electrons.	(1)
		••••••	(Total for question	 n = 6 marks)

2. The diagram shows the electronic configuration of an atom of an element.

(a) Complete the table by giving the missing information about this atom. (5)

name of the part of this atom labelled Z	
number of protons in this atom	
number of the group that contains this element	
number of the period that contains this element	
the charge on the ion formed from this atom	

(b) This element has three isotopes.


The table shows the mass number and percentage abundance of each isotope in a sample of this element.

Mass number	Percentage abundance (%)
24	79.2
25	10.0
26	10.8

Calculate the relative atomic mass (A_r) of this element. Give your answer to one decimal place.

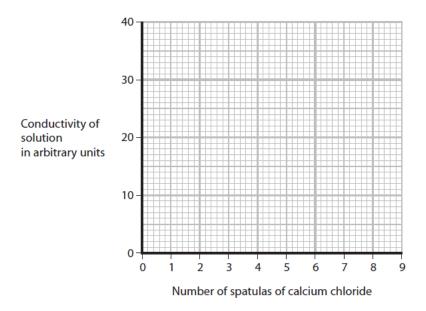
(3)

(a) The diagram shows the arrangement of electrons in an atom of calcium and in an atom of chlorine.

Describe, in terms of electrons, what happens when calcium reacts with chlorine to form the ionic compound calcium chloride, CaCl₂ (3)(b) Describe tests to show that an aqueous solution of calcium chloride contains calcium ions and chloride ions. (4) calcium ions

	chloride ior	าร				
••••						
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	 •••••	•••••
••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	 •	••••••

(c) Solid calcium chloride does not conduct electricity. Aqueous solutions of calcium chloride do conduct electricity.


A student uses this method to investigate how the conductivity of a solution changes when calcium chloride is dissolved in pure water.

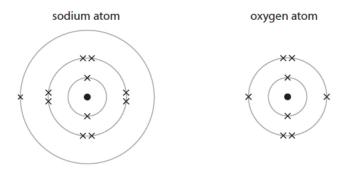
- Step 1 add 100 cm³ of pure water to a beaker
- Step 2 add one spatula of solid calcium chloride to the beaker
- Step 3 stir the solution
- Step 4 measure the conductivity of the solution
- Step 5 repeat until nine spatulas of solid calcium chloride have been added

The table shows the student's results.

Number of spatulas of calcium chloride	Conductivity of solution in arbitrary units
0	0
1	6
2	12
3	12
4	24
5	30
6	36
7	36
8	36
9	36

(i) Plot the results on the grid and draw two straight lines of best fit. Ignore the anomalous result.

	(ii) State the trend shown on the graph for the first six spatulas of calcium chloride.	(1)
	(iii) Suggest an error the student could have made to cause the anomalous result.	(1)
	(d) Describe another way to make solid calcium chloride conduct electricity.	(2)
••••		


(Total for question = 14 marks)

- 4. This question is about ionic compounds.
- (a) The table shows the formulae of some positive and negative ions, and the formulae of some compounds containing these ions.

	Mg ²⁺	Al³+	NH ₄
S ²⁻	MgS	AI_2S_3	
NO ₃		Al(NO ₃) ₃	NH ₄ NO ₃
CO ₃ ²⁻	MgCO₃		(NH ₄) ₂ CO ₃

	(i) Complete the table by giving the three missing formulae.	(3)
	(ii) Give the name of the compound with the formula NH_4NO_3	(1)
(b)	Sodium oxide, Na ₂ O, is an ionic compound. The sodium and oxide ions are held together by ionic bonds. (i) State the meaning of the term ionic bond.	(2)
•••		

(ii) The diagram shows the arrangement of the electrons in a sodium atom and in an oxygen atom.

Draw diagrams in the boxes to show the arrangement of the electrons in the ions of sodium oxide.

Include the charges on the ions.

	sodium ion	oxide ion	sodium ion	
			(Total for question =	9 marks)
	This question is about car			
(a)	(i) Draw a dot-and-cross of	diagram to show the ou	ter shell electrons in a ı	nolecule
	of carbon dioxide, CO ₂			(2)

(ii) The atoms in carbon dioxide are held together by covalent bonds. Describe the forces of attraction in a covalent bond.	(2)

(b)	The diagrar	n shows three d	ifferent structures o	f carbon.	
	•				
		diamond	graphite	C ₆₀ fullerene	
	(i) Explain v		nducts electricity.		(2)
••••	••••••	••••••••••	••••••		•••••••••
••••	•••••••	•••••	••••••	•••••	•••••••••••
		ucture and bon	as a much higher moding in your answer.	elting point than $C_{\scriptscriptstyle{60}}$ fu	llerene. (5)
••••	•••••••••	••••••		•••••	
••••		•••••	••••••		•
••••		••••••			
••••					
••••					

6.(a) Carbon dioxide changes directly from a solid to a gas without bec(i) Give the name of the change of state from solid to gas.	oming a liquid. (1)
(ii) Describe the test for carbon dioxide gas.	(2)
	•••••
	••••••
(b) Carbon dioxide is a simple molecular covalent substance. Explain why carbon dioxide turns from a solid to a gas at a very lo	w temperature. (2)

- (c) Diamond and graphite are both giant covalent substances made up of carbon atoms.
 - diamonds are used in cutting tools
 - graphite is used in pencils to make marks on paper

	Explain, with reference to structure and bonding, why each substance is suite for its particular use.	able (6)
•••••		•••••
•••••		•••••
•••••		•••••
•••••		•••••
		•••••
		•••••
		•••••
		•••••
•••••		
•••••		

(Total for question = 11 marks)

Mark Scheme

Q1.

Question number	Answer	Notes	Marks
(a)	C Neutron The only correct answer is C because the nucleus contains protons and neutrons. Protons are identified as the white dots		1
	A is not correct because electrons occur in the shells		
	B is not correct because a molecule is not a particle found in the nucleus D is not correct because the nucleus contains protons and neutrons		
(b)	A Electron The only correct answer is A because electrons have a relative mass of 1/1836 compared to a proton or a neutron		1
	B is not correct because a neutron has a relative mass of 1 C in not correct because the nucleus contains 4 protons and 5 neutrons D is not correct because a proton has a relative mass of 1		
(c)	C 9 The only correct answer is C because the mass number is the sum of the protons and neutrons		1
	A is not correct because the atomic number is 4 B is not correct because 5 is the number of neutrons D is not correct because 13 is the total number of protons, neutrons and electrons		
(d)	A 4 The only correct answer is A because the atomic number is equal to the number of protons which is 4		1
	B is not correct because 5 is the number of neutrons C is not correct because 9 is the total number of particles in the nucleus		
	D is not correct because 13 is the total number of protons, neutrons and electrons		
(e) (i)	beryllium/Be		1
(ii)	(positive) ion	ALLOW ecf from the element given in (e)(i) ACCEPT any positive beryllium ion (or other ecf ion)	1
		REJECT any negative ion	

(Q01 4CH1/1CR, Jan 2020)

Question number	Answer	Notes	Marks	
(a)				
	name of the part of the atom labelled Z			
	number of protons in this atom	12		
	number of the group that contains this element	2		
	number of the period that contains this element	3		5
	charge on the ion formed from this atom	2+	ACCEPT +2 / Mg ²⁺	
	percentage abundances	OR 2431.6	REJECT if correct working given but incorrectly evaluated ALLOW ECF from M1 (24 x 0.792) + (25 x 0.100) + (26 x 0.108) OR 24.316 with or without working scores M1 and M2 ALLOW ECF from M2 if calculated answer is to 1dp	3
				Total 8

(Q02 4CH1/1C, Jan 2020)

Q3.

Question number	Answer	Notes	Marks
(a)	M1 calcium loses electrons	IGNORE references to redox	3
	M2 chlorine gains electrons	Allow 1 mark from M1 and M2 for electron transfer from chlorine to calcium	
	M3 two atoms of chlorine each gain one electron	If chlorine molecules are gaining electrons do	
	OR	not award M3	
	M3 calcium loses 2 electrons and chlorine gains 1 electron		
		Any reference to sharing electrons or covalent or metallic bonding scores 0	
(b)	(test for Ca ²⁺ ions) M1 flame test (allow description of a flame test)		4
	M2 orange-red flame colour	ALLOW brick-red IGNORE orange / red alone M2 dep on M1	
		ALLOW M1 add sodium hydroxide	
		ALLOW M2 (slight) white precipitate (reject precipitate dissolves in excess sodium hydroxide)	
	(test for Cl ⁻ ions)		
	M3 add silver nitrate	IGNORE reference to nitric acid REJECT hydrochloric acid or sulfuric acid	
	M4 white precipitate	M4 dep on silver nitrate in M3	
(c)(i)	M1 and M2 all points correct ± half a square	One plotting error	3
	M3 2 straight lines of best fit ignoring the anomalous point	scores M1	
	Grandward 20 To the state of th		
(c) (ii)	the conductivity is (directly) proportional (to the number of spatulas of calcium chloride added)		1
	OR		
	the conductivity increases (as the number of spatulas of calcium chloride increases)		
(iii)	Any one from:		1
	M1 The student took the reading before adding the calcium chloride		
	M2 The student forgot to stir the mixture OR did not stir the mixture properly		
		IGNORE any references	
(d)	M1 Heat (the calcium chloride)	to human error	2
	M2 until molten / melts	IGNORE references to electrons / ions	

Question number			Answer		Notes	Marks
(a) (i)						3
		Mg ²⁺	Al ³⁺	NH ₄ ⁺		
	52-	MgS	Al ₂ S ₃	(NH ₄) ₂ S	1 mark for each correct formula	
	NO ₃ -	Mg(NO ₃) ₂	Al(NO ₃) ₃	NH4NO3		
	CO ₃ ²⁻	MgCO ₃	Al ₂ (CO ₃) ₃	(NH ₄) ₂ CO ₃		
(ii)	ammoni	um nitrate				1
(b) (i)	M1 electi	rostatic (for	ce of) attract	ion	ALLOW electrostatic force	2
	M2 between	een opposite	ly charged io	ons	ACCEPT between positive and negative	
					ions ACCEPT between	
					cations and anions	
(ii)	**************************************	*	*** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** *** ** *** *** *** *** **	***************************************		3
	M1 corre	ct electron a	arrangement	of both sodium	If only out on shalls	
		ct electron a	arrangement	of the oxide ion	If only outer shells shown correctly scores 1 mark	
					ACCEPT dots in place of crosses or any combination of dots and	
	M3 corre brackets)		n all ions (wit	th or without	crosses for M1 and M2	
						Total 9

(Q04 4CH1/1C, Jan 2020)

Question number	Answer	Notes	Marks
(a) (i)	M1 four electrons between the carbon and each oxygen M2 rest of molecule correct	M2 dep on M1	2
(ii)	M1 shared pair(s) of electrons M2 attracted to (two) nuclei	REJECT nucleus. Must be plural for M2. M2 dep on mention of electrons in M1	2
(b) (i)	M1 Graphite has delocalised electrons M2 (delocalised electron(s)) can move or flow (throughout the structure)	IGNORE sea of electrons IGNORE free electrons IGNORE number of electrons IGNORE references to carrying a charge or current IGNORE references to layers M2 dep on mentioning electrons in M1 Any mention of ions scores 0	2
(ii)	M1 (diamond) giant covalent	ALLOW macromolecular ALLOW giant structure if M2 is scored IGNORE tetrahedral structure REJECT molecules of diamond	5
	M2 (in melting diamond) covalent bonds are broken	ALLOW description of covalent bonds	
	M3 (C_{60}) (simple) molecular structure M4 (in melting C_{60}) intermolecular forces (of attraction) are overcome	ALLOW molecules of C ₆₀	
	M5 more energy is needed to break covalent bonds (in diamond) than intermolecular forces (in C_{60})	ALLOW strong covalent bonds and weak intermolecular forces (or attraction)	
		ACCEPT breaking bonds in C ₆₀ if intermolecular forces clearly mentioned	
		Mention of intermolecular forces in diamond no M2 or M5 Mention of breaking	
		covalent bonds in C ₆₀ no M4 or M5	

Q6.

Question number	Answer	Notes	Marks
(a) (i)	sublimation / subliming		1
(ii)	M1 (add to/bubble into) limewater		2
	M2 (limewater) turns cloudy/milky	ACCEPT forms white precipitate M2 DEP M1	
(b)	An explanation that links the following two points		
	M1 weak forces (of attraction) between molecules / weak intermolecular forces (of attraction)	ALLOW weak intermolecular bonds ALLOW weak intermolecular attractions	
	M2 little energy needed to overcome the (intermolecular) forces	IGNORE less energy	
	(Intermotecular) forces	ALLOW little energy needed to separate the molecules	
		M2 DEP M1 correct or missing	2
(c)	Any explanation that links any three of the following points for diamond		6
	M1 each (carbon) atom is (covalently) bonded to four other (carbon) atoms	ALLOW each carbon has four bonds	
	M2 in a (giant) tetrahedral lattice /network / structure	ALLOW 3D/rigid in place of tetrahedral	
	M3 the (covalent) bonds are (very) strong	ALLOW reference to lot of energy needed to break the (covalent) bonds	
		ALLOW there are lots of/many (covalent) bonds	
	M4 (therefore) diamond is (very) hard (and so good for cutting tools)	ALLOW diamond is (very) strong	
		If mention of intermolecular forces in diamond MAX 2 for diamond	
		If mention of ions in diamond only M4 can be scored	
	Any explanation that links any three of the following points for graphite		
	M5 each (carbon) atom is (covalently) bonded to three other (carbon) atoms		
	M6 (the structure is) in layers	ALLOW sheets	
	M7 weak forces (between layers)		
	M8 (the layers can) slide over each other/ rub off		
	M9 this makes graphite soft (so it can make marks on paper)	ALLOW slippery	
		If mention of intermolecular forces in graphite MAX 2 for graphite	
		If mention of ions in graphite only M9 can be scored	
			Total 11
			(0)