

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE in Chemistry (4CH1) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P71892A Publications Code 4CH1_1C_MS_2301 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i	particles should be close together and should fill from the bottom of the box, most particles should touch with a minimum of 2 random rows of particles	ALLOW particles filling the whole box IGNORE the size of the particles REJECT a regular	1
(i) solid	arrangement	1
(b)	solid to liquid melting		2
	solid to gas sublimation	ALLOW subliming	
(C)	An explanation that links the two points.		2
	M1 (particles / molecules have) more (kinetic) energy	ALLOW hot water has more (kinetic) energy	
		ALLOW (particles / molecules) move faster	
		IGNORE vibrate more	
	M2 can overcome / break the (intermolecular) forces/forces (between water molecules)	ALLOW can overcome / break the bonds (between water molecules) OR to break away from one another OR to escape more easily	
		IGNORE references to collisions, activation energy or rate of reaction	
		Total for o	question = 6

Question number	Answer	Notes	Marks
2 (a)	B (Cl ₂)		1
	A is not the correct answer as the symbol O is for atoms of oxygen not molecules C is not the correct answer as HCl is a compound D is not the correct answer as H ₂ O is a compound		
(b)	C (filtration)		1
	A is not the correct answer as crystallisation is not used to separate an insoluble solid from a liquid B is not the correct answer as evaporation will not separate an insoluble solid from a liquid D is not the correct answer as simple distillation is used to separate a solvent from a solution		
(c)	fractional distillation	REJECT distillation	1
		REJECT simple distillation	
(d) (i)	$D(X(s) \rightarrow X(aq))$		1
	A is not the correct answer as (l) is not the correct final state symbol B is not the correct answer as (g) Is not the final state symbol C is not the correct answer as the state symbols are the wrong way round		
(ii)	C (diffusion)		1
	A is not the correct answer as boiling does not occur in the beaker B is not the correct answer as condensing does not occur in the beaker D is not the correct answer as sublimation does not occur in the beaker		
(iii)	M1 potassium / K ⁺	potassium sulfate scores 2	2
	M2 sulfate / SO42-	K ₂ SO ₄ scores 2	
		KSO₄ alone scores 1	
		ALLOW in either order	
		If name correct ignore incorrect formula	
	•	Total for qu	estion = 7

	stion nber	Answer	Notes	Marks
3 (a		argon / Ar		1
	(ii)	C (nitrogen)		1
		A is not correct because nitrogen is more abundant than carbon dioxide methane or oxygen B is not correct because nitrogen is more abundant than methane D is not correct because nitrogen is more abundant than oxygen		
(b) (i)	(hydrated) iron (III) oxide	REJECT other oxidation states	1
			ALLOW Fe ₂ O ₃	
			IGNORE iron oxide	
	(ii)	(neon) has a full outer shell (of electrons)	ALLOW (neon) is unreactive / inert /has 8 electrons in the outer shell	1
			ALLOW (neon) does not lose or gain (or share) electrons	
	(iii)	M1 75 – 30 OR 45 (mm)		2
		M2 (45 ÷ 75 × 100) = 60(%)	ALLOW ecf from M1	
			correct answer of 60% without working scores 2	
			answer of 40% without working scores 1	
			Total for qu	lestion = 6

Question number	Answer	Notes	Marks
4 (a)	M1 baseline has been drawn in ink	ALLOW baseline is not drawn in pencil	4
	M2 and will therefore interfere with / contaminate the results	ALLOW will move up the paper / will get mixed up with A / will produce other colours /affect results / will smudge /ink is soluble	
	M3 the water level is above A/the baseline	ALLOW water level is too high / A is under water	
	M4 and therefore A will mix with/dissolve in the water	ALLOW A will wash off the paper	
		IGNORE references to lid	
(b) (i)	M1 one spot about $\frac{1}{4}$ of the way between the baseline and the top of the paper / solvent front and one spot about $\frac{1}{2}$ way	ALLOW answers that show solvent front	2
	M2 the lower spot labelled yellow and the higher spot labelled blue		
(ii)	the blue food colouring/it is more soluble (in water) ORA as long as yellow food colouring is referred to	IGNORE blue colour/it travels further up the paper	1
		Total for c	uestion = 7

Question number	Answer	Notes	Marks
5 (a) (i)	copper	ALLOW Cu REJECT copper(II) /Cu ²⁺	1
(ii)	magnesium cannot displace itself	ALLOW magnesium does not react with magnesium sulfate /magnesium ions /Mg ²⁺	1
		IGNORE magnesium does not react with magnesium /itself	
(b) (i)	magnesium /Mg aluminium /Al X copper /Cu	ALLOW 1 mark if aluminium and X are swapped.	2
		If copper(II) instead of copper 1 mark only	
(ii)	zinc / iron	ALLOW all other valid answers	1
(c)	An explanation that links the two points		2
	M1 magnesium /Mg (is the reducing agent)		
	M2 magnesium /Mg donates electrons (causing Al ³⁺ ions to be reduced)	ALLOW magnesium / Mg gives (away) / loses electrons (causing Al ³⁺ to be reduced) /Al ³⁺ gains electrons	
		No M2 if reference to aluminium/Al instead of aluminium ions/Al ³⁺	
		IGNORE Mg is oxidised	
		M2 dep on M1 Total for questio	n – 7 marks

Question number	Answer	Notes	Marks
6 (a)	B (chloroethene)		1
	A is not correct as the monomer has a double bond		
	C is not correct as the monomer has two carbons		
	D is not correct as the monomer has two carbons		
(b)	ЦС		1
	H C	Extension bonds do not	
		need to go through the	
		brackets	
	= c - c		
(C)	M1 (M_r of chloroethene) = 62.5		2
(-)			
	M2 2490000 ÷ 62.5 = 39 840		
(d)	A discussion which refers to any 4 of the following		4
. ,	points		
		ALLOW reference to	
	M1 polymers/poly(propene) will remain in landfill indefinitely OWTTE	ALLOW reference to running out of landfill	
		sites OWTTE	
	M2 (as they) are inert /unreactive/do not		
	biodegrade/do not decompose		
	M3 burning produces greenhouse gases / CO ₂		
	M4 reference to climate change /global warming		
	M5 burning produces toxic gases	ALLOW carbon	
		monoxide /CO	
		/hydrogen chloride/HCl	
		Max 3 if any reference	
		to the ozone layer	
(0)	M1 1:1:3 / 31 800 ÷ 10 600	ALLOW other evidence	2
(e)	MI 1.1.3 / 31000 ÷ 10000	of working	Z
	M2 CHCl ₃	ALLOW the atoms in any	
		order	
		Answer of CHCl ₃ without	
		working scores 2	
		_	
		Total for qu	estion = 10

Question number	Answer	Notes	Marks
7 (a)	X contains oxygen /OH	ALLOW hydrocarbons only contain hydrogen and carbon (atoms)	1
		REJECT oxygen molecules or hydrogen and carbon molecules	
(b)	W		1
(c)	V		1
(d)	CH ₂ =CHCH ₂ CH ₃	ALLOW CH ₂ CHCH ₂ CH ₃	1
(e)	M1 same molecular formula	ALLOW same numbers of C and H atoms	2
	M2 different displayed / structural formulae	ALLOW different arrangement of atoms	
(f) (i)	$C_4H_{10} + Br_2 \rightarrow C_4H_9Br + HBr$		2
	M1 C₄H ₉ Br as product	ALLOW polysubstitution	
	M2 rest of the equation correct	M2 dep on M1	
(ii)	C (substitution)		1
	A is not the correct answer because alkanes do not undergo addition reactions B is not the correct answer as this is not a combustion reaction D is not the correct answer as this reaction is not thermal decomposition		
(g)	A description that refers to any 3 from		3
	M1 nitrogen and oxygen (from air)	REJECT mention of petrol contains nitrogen for M1 only	
	M2 react at the high temperatures (in a car engine)	M2 dep on mention of nitrogen and oxygen	
	M3 forming oxides of nitrogen	ALLOW NO _x or named oxides of nitrogen	
	M4 which react with/dissolve in water forming nitric acid /HNO $_3$ /acid rain	M4 dep on M3 Total for qu	lostion - 12

Question number	Answer	Notes	Marks
8 (a) (i)	M1 NaCl M2 MgCl ₂	Penalise once only for incorrect case or superscript numbers	3
	M3 Mg ₃ N ₂	ALLOW symbols reversed e.g. N ₂ Mg ₃	
		ALLOW correct charges on ions e.g $Mg^{2+}(Cl^{-})_2$	
(ii)	magnesium oxide	Spelling must be correct	1
(iii)	83	IGNORE units	1
(b) (i)	M1 lithium changes (from 2.1) to 2	ALLOW (two) lithium (atoms) lose one electron	2
	M2 oxygen changes (from 2.6) to 2.8	ALLOW oxygen (atom) gains two electrons	
		No marks if mention of sharing electrons	
(ii)	An explanation that links the three points		3
	M1 strong (electrostatic) forces of attraction	ALLOW strong ionic bonds	
	M2 between oppositely charged ions		
	M3 which require a lot of energy to break	IGNORE more energy	
		0 marks if any mention of covalent bonds, intermolecular forces or molecules	
		Total for qu	uestion = 10

9 (a) M1 (electrostatic) attraction between nuclei must be plural 2 M2 and shared pair(s) of electrons OR M1 (electrostatic) attraction between shared pair(s) of electrons must be plural 2 (b) An explanation that links any 3 from must be plural 3 (b) An explanation that links any 3 from 3 M1 the boiling points increase (down the group/from F to Br) 3 M2 because the intermolecular forces get stronger M3 as (molecular) mass / size / number of electrons / (electron) shells increases M4 so more energy needed to separate the molecules/break the intermolecular forces No M2, M3 or M4 if any mention of breaking covalent/ionic bonds (c) An explanation that links any five from ALLOW sheets / rows M1 the structure is in layers ALLOW sheets / rows M2 there are weak forces between the layers (of atoms) REJECT intermolecular forces/molecules/ions M3 which can slide (over one another making it soft) M4 each carbon / atom makes three covalent bonds M5 (one) delocalised electron (per carbon / atom) REJECT ionic bonds M5 (delocalised) electrons flow / move / are mobile (to conduct electricity) REJECT molecules/ions	Question number	Answer	Notes	Marks
M1 the boiling points increase (down the group/from F to Br) M2 because the intermolecular forces get stronger M3 as (molecular) mass / size / number of electrons /(electron) shells increases No M2, M3 or M4 if any mention of breaking covalent/ionic bonds M4 so more energy needed to separate the molecules/break the intermolecular forces No M2, M3 or M4 if any mention of breaking covalent/ionic bonds (c) An explanation that links any five from 5 M1 the structure is in layers ALLOW sheets /rows M2 there are weak forces between the layers (of atoms) REJECT intermolecular forces/molecules/ions M3 which can slide (over one another making it soft) M4 each carbon / atom makes three covalent bonds M5 (one) delocalised electron (per carbon / atom) REJECT molecules/ions M6 (delocalised) electrons flow / move / are mobile REJECT molecules/ions	-	M2 and shared pair(s) of electrons OR M1 (electrostatic) attraction between shared pair(s) of electrons		2
M1 the structure is in layersALLOW sheets /rowsM2 there are weak forces between the layers (of atoms)REJECT intermolecular forces/molecules/ionsM3 which can slide (over one another making it soft)REJECT intermolecular forces/molecules/ionsM4 each carbon / atom makes three covalent bondsREJECT ionic bondsM5 (one) delocalised electron (per carbon / atom)REJECT molecules/ionsM6 (delocalised) electrons flow / move / are mobileREJECT molecules/ions	(b)	M1 the boiling points increase (down the group/from F to Br) M2 because the intermolecular forces get stronger M3 as (molecular) mass / size / number of electrons /(electron) shells increases M4 so more energy needed to separate the	mention of breaking	3
	(C)	 M1 the structure is in layers M2 there are weak forces between the layers (of atoms) M3 which can slide (over one another making it soft) M4 each carbon / atom makes three covalent bonds M5 (one) delocalised electron (per carbon / atom) M6 (delocalised) electrons flow / move / are mobile 	REJECT intermolecular forces/molecules/ions REJECT ionic bonds	5

	estic mbe		Answer	Notes	Marks
	(a)	(i)	measuring cylinder	ALLOW burette / pipette /syringe	1
				REJECT gas syringe	
((b)	(i)	M1 Q = m × c × Δ T		4
			M2 ΔT = 2880 ÷ (50 × 4.2)	M2 subsumes M1	
			M3 ΔT = 13.7(1) °C		
			M4 (maximum temp = 13.7(1) + 21.(0) =) 34.7 (°C)	ALLOW ecf from M3	
				ALLOW any number of sig fig except 1 in M3 and M4	
				Correct answer without working scores 4	
((b)	(ii)	thermal energy/heat lost (to the atmosphere / surroundings)	IGNORE energy lost	1
((b)	(iii)	M1 2880 ÷ 1000 OR 2.880 kJ		3
			M2 2.880 ÷ 0.05(00)	ALLOW ecf from M1	
			M3 -57.6kJ/mol	ALLOW any number of sig fig except 1 in M3	
			OR		
			M1 2880 ÷ 0.05(00) OR 57 600J		
			M2 57 600 ÷ 1000	ALLOW ecf from M1	
			M3 -57.6 kJ/mol	ALLOW any number of sig fig except 1 in M3	
				Correct answer without working scores 3	
				Total for c	uestion = 9

Question number	Answer	Notes	Marks
11 (a) (i)	M1 so all the nitric acid reacts/is neutralised		2
	AND		
	M2 therefore the solution only contains magnesium nitrate	ALLOW so the excess magnesium can be	
	OR	removed by filtration	
	M3 if acid is still present it will contaminate the crystals OWTTE		
(ii)	M1 moles of Mg that reacts = 0.0250 ÷ 2 OR 0.0125		3
	M2 mass of Mg that reacts = 0.0125 x 24 OR 0.3 (g)	ALLOW M1 × 24	
	M3 mass of Mg remaining = 0.45 (g)	ALLOW 0.75 - M2	
	OR		
	M1 moles of Mg = 0.0250 ÷ 2 OR 0.0125		
	M2 moles of Mg remaining = 0.75 ÷ 24 – 0.0125 OR 0.03125 – 0.0125 OR 0.01875	ALLOW 0.03125 – M1	
	M3 mass of Mg remaining (= 0.01875 x 24) = 0.45 (g)	ALLOW M2 x 24	
		Correct answer without working scores 3	
		0.15 (g) scores 2	
(iii)	M1 filter off the excess magnesium		5
	M2 heat the solution until crystals first start to form	ALLOW heat until the solution is saturated / heat until crystals form on the end of a glass rod /heat to evaporate some	
	M3 leave the solution to cool (and crystallise)	of the water	
	M4 pour/filter off excess liquid (to obtain crystals)	IGNORE washing	
	M5 leave (crystals) to dry	ALLOW any method of drying that avoids excess heat e.g. filter paper, a desiccator, a warm oven	
		If heated to dryness only M1 can be scored	
		If solution is not heated only M1, M4 and M5 can be scored	

(b)	M1 tangent drawn (at 40 s)		3
	M2 change in volume of hydrogen ÷ change in time		
	M3 correct answer between 2.75 and 3.75 (cm ³ /s) inclusive		
		If no tangent drawn allow 1 mark for 240 ÷ 40 = 6 (cm ³ /s)	
		Total for que	stion = 13

Question number	Answer	Notes	Marks
12 (a) (i)	to make sure all the water is given off/evaporates	ALLOW to make sure the reaction is complete	1
(ii)	5.2(0 g)		1
(iii)	0.9(0 g)		1
(iv)	M1 moles of BaCl ₂ = 5.2 ÷ 208 OR 0.025	ALLOW ecf from (ii)	3
	M2 moles of $H_2O = 0.9 \div 18 \text{ OR } 0.05(0)$	ALLOW ecf from (iii)	
	M3 0.05(0) ÷ 0.025 = 2	ALLOW ecf from M1 and M2 as long as the answer is an integer	
		Correct answer without working scores 3	
(b)	M1 (measure the) boiling point	ALLOW freezing point	2
	M2 100°C	ALLOW 0°C for freezing point	
(c) (i)	reversible	ALLOW the reaction goes in both directions	1
		IGNORE equilibrium	
(ii)	M1 add water to anhydrous copper sulfate	ALLOW white copper sulfate	2
	M2 which turns (from white) to blue	M2 dep on mention of anhydrous/white copper sulfate	
		Max 1 mark if incorrect starting colour	
(iii)	M1 moles of water = 0.02 x 5 OR 0.1		2
	M2 molecules of water = 6×10^{22}	ALLOW ecf from M1	
		Correct answer without working scores 2	
		1.2 x 10 ²² scores 1	
Total for question = 1			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom