Revision PPQu – Unit 3: Moles and Calculations MARK SCHEME

Q1.

M1 (M_r of sodium carbonate) = 106		3
M2 (moles of sodium carbonate 2.12 ÷ 106 =) 0.02	ALLOW ecf from M1	
	M2 subsumes M1	
M3 (mass of carbon dioxide $0.02 \times 44 =$) 0.88 (g)	ALLOW answer from M2 x 44	
	answer of 0.88 (g) with or without working scores 3	

Q2.

(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 marks if upside down calculation or use of atomic numbers	2
	M2 (divide by smallest) 1 3 1		
(ii)	M1 Mr of CH ₃ O = 31 M2 (62 ÷ 31 = 2 so molecular formula is) C ₂ H ₆ O ₂	C ₂ H ₆ O ₂ without working scores 2	2

Q3.	
	(a)

1		<u> </u>	
M1 calculation of actual mass of crystals obtained		3	
M2 division by expected mass of crystals (6.4) and multiplication by 100 to convert to percentage			
M3 correct to 1 dp			
Example calculation			
M1 (6.40 - 1.80 =) 4.6(0)			
M2 (% yield =) <u>4.6</u> x100 OR 71.875 (%) 6.4	M2 ECF M1		
M3 = 71.9 (%)	M3 DEP M2		

(b)	M1 find percentage of water		3
	M2 divide each percentage by Mr to find number of moles		
	M3 divide each answer by smallest to find ratio and value of x		
	Expected calculation:		
	M1 (79%) CaSO ₄ 21% H ₂ O		
	M2 <u>79</u> (= 0.58) <u>21</u> (= 1.17) 136 18		
	M3 <u>0.58</u> 0.58 <u>1.17</u> = 1 : 2 0.58		
	so x = 2	correct answer without working scores 3	

1	2		
C)	21	

Question number	Answer	Notes	Marks
(a) (i)	so that the (hot) lead does not react with oxygen/air (converting back into lead oxide)	ACCEPT so that lead is not oxidised (back to lead oxide)	1
(ii)	M1 repeat the heating M2 until the mass remains constant/ does not change	ACCEPT heat to constant mass for both marks	2
(b) (i)	4.66 (g)		1
(ii)	0.48 (g)		1
<mark>(</mark> iii)	 calculate the moles of lead and oxygen divide by the smaller number calculate the whole number ratio give the empirical formula 		
	Example calculation M1 <u>4.66</u> and <u>0.48</u> OR 0.0225 and 0.03(00) 207 M2 <u>0.0225</u> and <u>0.03(00)</u> OR 1:1.33 0.0225 OR 0.0225	Division by atomic numbers or upside down calculation scores 0	
	M3 1 x 3 and 1.33 x 3 OR 3:4 M4 Pb ₃ O ₄	3:4 ratio without working scores 3 Pb ₃ O ₄ without working scores 4	
		ALLOW ECF from incorrect masses.	
uestion umber	Answer	Notes	Marks

Question number	Answer	Notes	Marks
(c) (i)	$Pb(NO_3)_2$ (aq) + 2HCl (aq) $\rightarrow PbCl_2$ (s) + 2HNO ₃ (aq)	ALLOW any combination of uppercase and lowercase letters	1
(ii)	 calculate the amount of PbCl₂ multiply the moles by the M_r of PbCl₂ evaluation to show that the value is about 5 g Example calculation M1 n(PbCl₂) = 0.0370/2 OR 0.0185 (mol) 		3
	M2 mass of PbCl ₂ = 0.0185 x 278 (g) M3 5.143 (g)	MAX 1 for 0.0370 x 278 if no division by 2 in M1 ALLOW any number of sig figs 5.1, 5.14 and 5.143 g without working score 3 5 g without working scores 0 ALLOW alternative methods	
			Total 13

Extensions

~	
\mathbf{O}	1
Y	

	2	
ALLOW ecf from M1		
Correct answer without working scores 2		
C	orrect answer without	orrect answer without vorking scores 2

Q2.

M1 amount of water = 2.16 ÷ 18 = 0.12 mol	1
M2 number of hydrogen atoms = (0.12 ÷ 0.01) x 2 = 24	1
M3 formula of alkane = $C_{11}H_{24}$	1
Correct answer of C ₁₁ H ₂₄ scores 3 marks	

Q3.

(c)	M1 8.46 × 10 ⁻³ mol of zinc	ALLOW any number of	2
	M2 therefore 1.69×10^{-2} mol hydrochloric acid needed (which is less than 2.50×10^{-2} mol)	sig figs including one e.g. 0.008 moles of zinc, therefore 0.016 moles of acid needed scores M1	
	OR	and M2	
	M1 1.25 × 10 ⁻² mol of zinc are needed		
	M2 therefore 0.8(13) g of zinc is needed (and there is only 0.55g)		