Year 10 Summer 2025 REVISION MARK SCHEME

Q1.

Question number	Answer	Notes	Marks
(a) (i)	particles should be close together and should fill from the bottom of the box, most particles should touch with a minimum of 2 random rows of particles	ALLOW particles filling the whole box IGNORE the size of the particles	1
		REJECT a regular arrangement	
(ii)	solid		1
(b)	solid to liquid melting		2
	solid to gas sublimation	ALLOW subliming	
(c)	An explanation that links the two points.		2
	M1 (particles / molecules have) more (kinetic) energy	ALLOW hot water has more (kinetic) energy	
		ALLOW (particles / molecules) move faster	
		IGNORE vibrate more	
	M2 can overcome / break the (intermolecular) forces/forces (between water molecules)	ALLOW can overcome / break the bonds (between water molecules) OR to break away from one another OR to escape more easily	
		IGNORE references to collisions, activation energy or rate of reaction	

(Q01 4CH1/1C, Jan 2023)

Question number		Answer			Notes	Marks
(a)						2
		Electron	Proton	Neutron		
	Relative mass	0.0005	1	1		
	Relative charge	-1	+1	0		
	ALLOW	-	+		All 4 correct 2 marks 2 or 3 correct 1 mark	
(b) (i)	B (3)					1
	A is incorrect as 2 C is incorrect as 4 D is incorrect as 7	is not the ato	omic number			
(ii)	B (16)					1
	A is incorrect as 8 C is incorrect as 18 D is incorrect as 26	is not the m	ass number	of U		
(iii)	S				ALLOW nitrogen/N/N ₂	1
(c) (i)	An explanation that	t links the fo	llowing two	points		2
	M1 (Q and R have) 5 protons	same numbe	r of protons/	both have	IGNORE same number of electrons	
	M2 (but) different neutrons and (R has				IGNORE references to atomic and mass numbers	
(ii)	M1 20.6 × 10 + 79.4 M2 <u>20.6 × 10 + 79.4</u> 100			10.794	ALLOW ecf if incorrect mass numbers used	3
	M3 10.8				10.8 without working scores 3	
					10.79/10.794 without working scores 2	
					Use of 5 and 6 = 5.8 scores 2 Use of 15 and 16 = 15.8 scores 2 Use of 5 and 5 =5.0 scores 1	
						Total 10

(Q02 4CH1/1C, Nov 2023)

Question number	Answer	Notes	Marks
(a)	crystallisation		3
	simple distillation	REJECT distillation	
	filtration		
(b)	(the box contains) (2) different substances	IGNORE type of particle	1
	/ eternents	REJECT compounds	
(c)	Any two from:		2
	M1 D contains 3 food dyes		
	M2 food colouring D contains A and C		
	M3 food colouring D does not contain B / food colouring D contains another dye (which is not A. B or C)		
(d) (i)	4		1
(ii)	11		1
		Total for o	question = 8

(Q02 4CH1/1CR, June 2023)

Q4.

Question number	Ar	nswer	Notes	Marks
(a)	Type of bonding (X) covalent	Type of structure simple molecular		4
	(Y) M1 covalent	M2 giant (covalent)	ALLOW giant molecular /giant covalent lattice ACCEPT macromolecular	
	(Z) M3 ionic	M4 giant (ionic) <u>lattice</u>	ALLOW (ionic) lattice IGNORE 'giant' alone	
(b)	An explanation that li	nks the following points		2
	M1 (X has) weak inter forces between molec	rmolecular forces / weak cules	ALLOW weak intermolecular bonds / weak bonds between molecules	
			IGNORE less energy	
	M2 (so) little energy forces/separate the n require little energy t		REJECT any reference to weak covalent bonds or covalent bonds being broken or ionic bonds for both marks.	
			REJECT intermolecular forces between atoms/bonds for both marks	
				Total 6

Question number	Answer	Notes	Marks
(a) (i)	24		1
(ii)	M1 12 × 8 + 1 × 10 + 14 × 4 + 16 × 2 M2 194	correct answer of 194 scores 2 No ECF	2
(iii)	C₄H₅N₂O	ALLOW atoms in any order	1
(b) (i)	(simple) distillation	REJECT fractional distillation	1
(ii)	A description that refers to two of the following points		2
	M1 (the condenser/X) cools the (ethanol) vapour M2 so it condenses OR forms liquid (ethanol)		
	M2 SO IL condenses OR TOTTIS fiquid (ethanot)		
(c)	M1 calcium bromide is a giant (ionic) lattice/structure		5
	M2 with many/strong electrostatic attractions between (oppositely charged) ions	ALLOW many/strong ionic bonds No M2 if covalent bonds or IMF given here	
	M3 caffeine has a simple molecular structure	ALLOW simple covalent structure	
	M4 caffeine has weak intermolecular forces /weak forces between molecules	REJECT weak forces between bonds	
	M5 more energy is needed to break the electrostatic attractions (in calcium bromide) than to overcome the intermolecular forces (in caffeine) OWTTE	No M5 if reference to breaking covalent bonds No M5 if reference to incorrect bonds	
			Total 12

(Q04 4CH1/1C, June 2024)

Question number	Answer	Notes	Marks
(a) (i)	clockwise from bottom left		3
	M1 solvent	ALLOW water	
	M2 solvent front		
	M3 chromatography paper	ALLOW paper	
	20 Words Franch	ALLOW chromatogram	
	baseline drawn 0	ALLOW GIROLINGS	
	Diagram 1		
(ii)	pencil is not soluble / insoluble	ACCEPT pencil will not dissolve	1
		ALLOW pencil will not run (up the chromatogram)	
(b) (i)	B (W and Y)		1
	A is not the correct answer because W and X do not have a spot at the same height C is not the correct answer because X and Z do not have a spot at the same height D is not the correct answer because Y and Z do not have a spot at the same height		
(ii)	M1 distance moved by the dye from 1.1 to 1.4 (cm) distance moved by the solvent 6.5 (cm)		2
	M2 distance moved by the dye ÷ distance moved by the solvent and correctly evaluated	e.g. 0.17 / 0.18 / 0.2(0) / 0.22	
		ALLOW any number of sig figs as long as it is correctly rounded.	
		ALLOW ECF from M1	
		total for o	question = 7

(Q05 4CH1/1CR, June 2024)

Question number	Answer	Notes	Marks
(a) (i)	An explanation that links the following two points	ALLOW dye in place of spot throughout question 5	2
	M1 They will not dissolve/diffuse into the solvent (at the bottom of beaker) OWTTE	ALLOW water	
	M2 so that the dyes can travel up the paper		
(ii)	An explanation that links the following two points		2
	M1 E and H	M2 dep on M1	
	M2 as the dye is/both have a spot at the same level/travelled the same distance/same Rf value		
(iii)	An explanation that links the following two points		2
	M1 The student can only be certain about G containing one dye as only one spot		
	M2 As F is insoluble/not moved (so you cannot tell how many dyes it has) OWTTE		
(b)	M1 distance from baseline to solvent level in mm = 65		3
	M2 distance from baseline to spot/dye in mm = 39	ACCEPT any value between 38 and 41 inclusive	
	M3 (R_f value = $39 \div 65$ =) 0.6	ACCEPT any value between 0.57 and 0.64	
		M3 not awarded if value is incorrectly rounded	
			Total 9

(Q05 4CH1/1C, June 2024)

Question number	٠ ا	Answer	Notes	Marks
(a) (i	i)	AICI3 ZnSO4 (NH4)3N	ALLOW formula in reverse NOT molecular formula Penalise symbol letters/size of subscripts once only	3
(ii	i)	aluminium sulfate	ALLOW aluminium sulphate	1
(b)		M1 magnesium loses electrons M2 chlorine gains electrons	ALLOW magnesium gives/transfers electrons to chlorine for M1,M2 NOT chloride gains electrons	3
		M3 magnesium loses two electrons and two chlorines each gain one electron	M3 assumes M1,M2 ALLOW correct ionic equations	
(c) (i	i)	M1 two electrons between each nitrogen and hydrogen atom		2
(ii	i)	M2 two non-bonding electrons M1 (electrostatic) forces of attraction between shared pair(s) of electrons	M2 dep on M1	2
		M2 and the nuclei	REJECT nucleus (must be plural) REJECT intermolecular forces for both marks Total = 11	

(Q06 4CH1/1C, Nov 2024)

Question number	Answer	Notes	Marks
(a)	M1 (electrostatic) attraction between (two) nuclei	nuclei must be plural ALLOW nucleus of both/two atoms	2
	M2 and shared/bonding <u>pair(s)</u> of electrons	both two dealis	
	OR		
	M1 (electrostatic) attraction between shared/bonding pair(s) of electrons		
	M2 and (two) nuclei	nuclei must be plural	
(b)	An explanation that links the following three points		3
	M1 diamond is a giant covalent structure/giant lattice structure	IGNORE giant molecule	
	M2 there are (many) strong covalent bonds (which need to be broken)		
	M3 large amount of (heat/thermal) energy needed to break the covalent bonds	IGNORE more energy	
		no M2 or M3 if reference to	
		intermolecular forces/ions in	
		diamond	
(c)	An explanation that links the following two points		2
	M1 (graphite has) <u>delocalised</u> electrons	Ignore free electrons	
	M2 (electrons) are mobile/move/flow	M2 dep on mention of electrons Ignore carry charge	
		0 marks if reference to ions in graphite or atoms moving	
(d)	M1 (number of atoms =) 60 × 6.0 × 10 ²³	correct answer	2
\- /		without working scores 2	
	M2 3.6 × 10 ²⁵	answer must be in correct standard form to 1 decimal place	
			Total 9

(Q08 4CH1/1C, Nov 2023)

Question number	Answer	Notes	Marks
(a) (i)	Any 2 from		2
	M1 effervescence/bubbles/fizzing		
	M2 moves	moves on surface scores M2 and M3	
	M3 floats	M2 and M3	
	M4 disappears/ gets smaller	ALLOW dissolves	
	M5 melts/forms a ball/forms a sphere	IGNORE heat produced	
	M6 white trail	IGNORE flame	
(ii)	An explanation that links the following two points	Mark independently	2
	M1 (the phenolphthalein) turns pink	ALLOW an alkaline solution /an alkali is produced	
		REJECT red or purple	
	M2 (because) OH ⁻ ions/hydroxide ions are present	IGNORE metal oxide forms	
(b) (i)	An explanation that links the following two points		2
	M1 (to remove) any other ions/chemicals/ impurities/substances/elements (that may be on the wire)		
	M2 (so that) they do not interfere with/mask the colour of the flame/change the flame colour		
(ii)	C (red)		1
	A is incorrect as lithium ions do not give a lilac flame		
	B is incorrect as lithium ions do not give an orange flame		
	D is incorrect as lithium ions do not give a yellow flame		
(a) (i)	M1 potassium ion K+		2
(c) (i)	M1 potassium ion K ⁺ M2 aluminium ion Al ³⁺	ALLOW Al+3	
	M3 sulfate ion SO ₄ 2-	ALLOW SO ₄ -2	
	All three correct 2 marks	ALEON 304	
	Any two correct 1 mark		
(c) (ii)	Any two confect i mark		4
(c) (ii)	M1 (mass of water =) 23.7 – 12.9 OR 10.8	correct answer of 12 without working scores 4	1
	M2 (moles of KAl(SO ₄) ₂ =) 12.9 ÷ 258 OR 0.05(00)	ALLOW ecf on incorrect mass of water	
	M3 (moles of water =) 10.8 ÷ 18 OR 0.6(00)	mass of water	
	M4 (x = 0.6 ÷ 0.05 =) 12	answer to M4 must be a whole number	
		ACCEPT alternative methods	
			Total 13

Question number	Answer	Notes	Marks
(a) (i)	M1 so all the nitric acid reacts/is neutralised		2
	AND M2 therefore the solution only contains magnesium nitrate OR	ALLOW so the excess magnesium can be removed by filtration	
	M3 if acid is still present it will contaminate the crystals OWTTE		
(ii)	M1 moles of Mg that reacts = 0.0250 ÷ 2 OR 0.0125		3
	M2 mass of Mg that reacts = 0.0125×24 OR 0.3 (g)	ALLOW M1 × 24	
	M3 mass of Mg remaining = 0.45 (g)	ALLOW 0.75 - M2	
	OR		
	M1 moles of Mg = 0.0250 ÷ 2 OR 0.0125		
	M2 moles of Mg remaining = 0.75 ÷ 24 – 0.0125 OR 0.03125 – 0.0125 OR 0.01875	ALLOW 0.03125 - M1	
	M3 mass of Mg remaining (= 0.01875×24) = 0.45 (g)	ALLOW M2 x 24	
		Correct answer without working scores 3	
		0.15 (g) scores 2	
(iii)	M1 filter off the excess magnesium		5
, ,	M2 heat the solution until crystals first start to form	ALLOW heat until the solution is saturated / heat until crystals form on the end of a glass rod /heat to evaporate some of the water	
	M3 leave the solution to cool (and crystallise)		
	M4 pour/filter off excess liquid (to obtain crystals)	IGNORE washing	
	M5 leave (crystals) to dry	ALLOW any method of drying that avoids excess heat e.g. filter paper, a desiccator, a warm oven	
		If heated to dryness only M1 can be scored	
		If solution is not heated only M1, M4 and M5 can be scored	
(b)	M1 tangent drawn (at 40 s)		3
	M2 change in volume of hydrogen ÷ change in time		
	M3 correct answer between 2.75 and 3.75 (cm³/s) inclusive		
		If no tangent drawn allow 1 mark for 240 ÷ 40 = 6 (cm³/s)	
		Total for que	stion = 13

Question number	Answer	Notes	Marks
(a) (i)	nitrogen	ALLOW N₂ IGNORE N	1
(ii)	argon	ALLOW Ar	1
(iii)	carbon dioxide	ALLOW CO ₂ /H ₂ O(g)/water vapour/CH ₄ /methane	1
(b) (i)	brown/red-brown/orange-brown	ALLOW orange	1
		IGNORE red	
		ALLOW rusty/rust coloured (looks like)rust/rusted	
(ii)	M1 (change in length of column =) 84 - 69 OR 15 (mm)		2
	M2 $\frac{15 \times 100}{84}$ = 17.86/17.9 (=18)	M2 subsumes M1	
	04	Working must be shown to score M2 Ecf for M2 eg 18/84 x100 =21.4 REJECT 17.85/17.8 as wrongly rounded	
(iii)	not all the oxygen in the sample of air had reacted with the iron wool OWTTE /not enough iron wool	ALLOW there is water vapour in the column of air/changes in temperature / pressure / location ALLOW Reaction incomplete/reaction too slow	1
			Total 7

(Q02 4CH1/1CR, Jan 2023)

Quest numb		Answer	Notes	Marks
(a)	(i)	(hydrated) iron(III) oxide / Fe ₂ O ₃	IGNORE iron oxide REJECT iron(II) oxide	1
	(ii)	D oxidation		1
		A is incorrect as it is not a combustion reaction B is incorrect as it is not a decomposition reaction C is incorrect as it is not a neutralisation reaction		
	(iii)	zinc	ALLOW Zn	1
(b)	(i)	$Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$	ALLOW multiples and fractions	1
			IGNORE state symbols even if incorrect	
	(ii)	(squeaky) pop with lighted splint/lit with a (Bunsen) flame	IGNORE just 'burns with a squeaky pop'	1
			REJECT use of glowing splint	
(c)	(i)	displacement	ACCEPT redox /oxidation and reduction	1
	(ii)	pink-brown /pink (solid)	ACCEPT pink / brown / orange alone or in combinations eg orange-brown	1
			ALLOW red-brown	
			REJECT red	
			IGNORE copper	
(d)		iron is less reactive/lower in the reactivity series (than magnesium) ORA	IGNORE just 'iron is not reactive enough' with no comparison	1
				Total 8

(Q02 4CH1/1C, June 2023)

Q14.

Questi numb		Answer	Notes	Marks
(a)		M1 water	ALLOW moisture / H₂O	2
		M2 oxygen	ALLOW air / O ₂	
			answers can be in either order	
	(ii)	oxidation	ALLOW oxidisation / oxidising / redox	1
(b)	(i)	M1 paint acts as a barrier / layer		2
		M2 which prevents air / oxygen / water getting to / reacting with the iron		
	(ii)	galvanising	ALLOW galvanisation	1
			IGNORE sacrificial protection	
	(iii)	M1 zinc is more reactive than iron		2
		M2 (therefore) is oxidised / reacts with oxygen / loses electrons more readily / in preference to	ALLOW corrodes instead of iron	
		/instead of iron	REJECT zinc rusts	
(c)	(i)	M1 aluminium is more reactive than iron / ORA		2
		M2 because aluminium displaces iron (from iron(III) oxide)		
	(ii)	M1 iron(III) oxide (is the oxidising agent)	ALLOW iron oxide / iron ions / Fe³+ ions throughout	2
		M2 iron(III) oxide donates oxygen to aluminium	ALLOW (iron(III) oxide / iron ions / Fe³+ ions) takes electrons from aluminium	
			ALLOW (iron(III) oxide / iron ions / Fe ³⁺ ions) causes aluminium to be oxidised	

(Q05 4CH1/1CR, June 2023)

Questi		Answer	Notes	Marks
(a)	(i)	(thermal) decomposition		1
	(ii)	M1 amount of PbCO ₃ = $\frac{5.34}{267}$ = 0.02(00) (mol)	Correct answer without working scores 2	2
		M2 mass of PbO = 0.02(00) x 223 = 4.46 (g)	ACCEPT alternative methods	
(b)	(i)	M1 diagram showing delivery tube going into test tube containing liquid	REJECT if sealed with a bung	2
	(ii)	M2 limewater labelled (limewater) turns cloudy/milky	ALLOW white precipitate	1
			(ii) dep on mention of limewater in either (i) or (ii)	
(c)		An explanation that links six of the following points		6
		M1 silicon dioxide has a giant (covalent) structure		
		M2 covalent bonds are (very) strong		
		M3 (in silicon dioxide) many covalent bonds need to be broken		
		M4 a large amount of energy/more energy is required to break the bonds in silicon dioxide	No M3 or M4 if reference to intermolecular forces in silicon dioxide	
		M5 carbon dioxide has a simple molecular structure/is a simple molecule		
		M6 the forces between the molecules/intermolecular forces (in carbon dioxide) are weak	No M6 or M7 if any reference to weak covalent bonds or breaking of covalent	
		M7 very little energy/less energy is needed to overcome the forces between the molecules/intermolecular forces (in carbon dioxide)	bonds in carbon dioxide Accept bonds between molecules weak	
			A statement such as 'more energy is needed to break the bonds in silicon dioxide than to overcome the forces	
			between the molecules/intermolecular forces (in carbon dioxide)' scores M4 and M7	
				Total 12

	Question number	Answer	Notes	Marks
	(a) (i)	$2PbS + 3O_2 \rightarrow 2PbO + 2SO_2$		2
		M1 formulae of O ₂ and SO ₂		
		M2 rest of equation correctly balanced	M2 dep on M1 ALLOW multiples/fractions	
	(ii)	(sulfur dioxide causes) acid rain / breathing problems	ALLOW named breathing problems such as asthma ALLOW other effects of acid rain such as killing fish, damage to stonework, killing plants	1
	(iii)	M1 (moles lead(II) oxide) = 892 000 000 ÷ 223 OR 4 000 000 moles	ALLOW calculations done in megamoles throughout	3
		M2 (moles of carbon dioxide) = 2 000 000	ALLOW M1÷2	
		M3(mass of carbon dioxide) = 88 (tonnes)	88 (tonnes) scores 3 marks	
Г				
	(iv)	any 5 from:		5
		lead(II) sulfide		
		M1 giant ionic structure/lattice M2 strong (ionic) bonds OR strong electrostatic forces (between oppositely charged) ions	REJECT molecules/covalent bonds/ intermolecular forces for all three marks	
		M3 which take a lot of energy to break / overcome	M3 dep on M2	
		sulfur dioxide	REJECT ions/ionic bonds for all 3 marks	
		M4 simple molecular/covalent structure	ALLOW molecules NOT particles/atoms	
		M5 weak intermolecular forces OR weak forces between molecules	NOT weak IMF between atoms	
		M6 which take little energy to overcome	M6 dep on M5	
	(b)	M1 90.7÷207 and 9.30÷16	NOT atomic numbers	4
		M2 0.438 (moles of lead) and 0.581 (moles of oxygen)	ALLOW 9.30÷32 for ecf Answer must be 2sf or more	
		M3 ratio of moles = 1:1.33	ALLOW 1.3	
		M4 empirical formula is Pb ₃ O ₄	ALLOW ecf from ratio shown to produce formula	
L			Total = 15	

Q17.

Question number	Answer	Notes	Marks
(a)	the gas also contains air (displaced from the conical flask)		1
(b)	M1 a catalyst provides an alternative (reaction) pathway / route		2
	M2 of lower activation energy		
(c)	M1 add hydrogen peroxide solution (to the conical flask) and add one of the catalysts		5
	M2 record the time taken to collect a fixed volume of gas OR record the volume of gas collected in a fixed time	ALLOW record the time when no more gas produced	
	AND any 2 from		
	M3 repeat with the same volume / same concentration of hydrogen peroxide solution	ALLOW same amount	
	M4 (repeat at) same temperature		
	M5 use same mass / same surface area of each catalyst	ALLOW same amount	
	AND		
	M6 the most effective catalyst produces the greatest volume of gas per unit time OR takes the least time to produce a fixed volume of oxygen	ALLOW the least time taken to complete the reaction is the most effective catalyst	
(d)	M1 steeper curve starting at the origin		2
	M2 same volume of oxygen produced		
	Total for question		

(Q06 4CH1/1CR, June 2023)

Q18.

Question number	Answer	Notes	Marks
(a)	carbon dioxide/a gas escapes/is lost/released (through the cotton wool)	NOT carbon dioxide/gas is given off/produced NOT wrong named gas	1
(b)	M1 the concentration (of hydrochloric acid) is highest	ALLOW there is a greater surface area of marble chips ALLOW greater amount of hydrochloric acid/reactants ALLOW more particles	2
	M2 so there are more collisions per unit time	ALLOW more frequent collisions REJECT references to greater (kinetic) energy for both marks	
(c)	the hydrochloric acid has been used up OWTTE	NOT acid is saturated IGNORE acid is a limiting factor	1
(d) (i)	any two from:	g	2
	(same) mass of marble chips	ALLOW (same) amount of marble chips	
	(same) surface area of marble chips	ALLOW (same) size marble chips	
	(same) concentration of hydrochloric acid		3
	(same) volume of hydrochloric acid	NOT same amount of acid	
(ii)	M1 rate of reaction increases		
	M2 particles have more energy OR more particles have energy greater than (or equal to) the activation energy	ALLOW particles move faster	
	M3 so more successful collisions per unit time	ALLOW more frequent successful collisions	
		Total = 9	

(Q08 4CH1/1C, Nov 2024)