Please check the examination details bel	ow before enterir	ng your candidate information
Candidate surname	(Other names
Centre Number Candidate No Candidate No Candidate No Candidate No Candidate No Pearson Edexcel Inter		I GCSE (9–1)
Friday 17 May 2024		
Morning (Time: 2 hours)	Paper reference	4CH1/1C 4SD0/1C
Chemistry UNIT: 4CH1 Science (Double Award) 40 PAPER: 1C	CH1/4SD0	
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Show all the steps in any calculations and state the units.

Information

- The total mark for this paper is 110.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

* The lanthanoids (atomic numbers 58–71) and the actinoids (atomic numbers 90–103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

DO NOT WRITE IN THIS AREA

4 H e 2	20 Ne 10	40 Ar argon 18	84 Krypton 36	131 Xe xenon 54	[222] Rn 86	fully
	19 fluorine 9	35.5 CI chlorine 17	80 Br 35	127 1 iodine 53	[210] At astatine 85	orted but not
	16 ^{oxygen} 8	32 Sulfur 16	79 Se 34	128 Te tellurium 52	[209] Po 84	ve been repo
	14 nitrogen 7	31 Phosphorus 15	75 As arsenic 33	122 Sb 51	209 Bi 83	s 112–116 ha authenticated
	12 carbon 6	28 Silicon 14	73 Ge 32	119 tin 50	207 P b lead 82	mic numbers a
	11 ອ ^{boron}	27 Al aluminium 13	70 Ga 31	115 Indium 49	204 T 81	Elements with atomic numbers 112–116 have been reported but not fully authenticated
I			65 Zn 30	112 Cd cadmium 48	201 Hg 80	Eleme
			63.5 Cu 29	108 Ag silver 47	197 Au 79	[272] Rg 111
			59 nickel 28	106 Pd ^{palladium} 46	195 Pt 78	[271] DS darmstactium 110
			59 Co cobalt 27	103 Rh 45	192 Ir 77	[268] Mt 109
hydrogen 1			56 iron 26	101 Ru 144	190 Os مەساسس 76	[277] Hs hassium 108
			55 Nn manganese 25	[98] Tc technetium 43	186 Re 75	[264] Bh ^{bohium} 107
	nass ool umber		52 Cr chromium 24	96 Mo 42	184 V 14 74	[266] Sg 106
Key	relative atomic mass atomic symbol name atomic (proton) number		51 vanadium 23	93 Nb 41	181 Ta tantalum 73	[262] Db dubnium 105
	relativ ato atomic		48 titanium 22	91 Zr zirconium 40	178 Hf ^{hafnium} 72	[261] Rf ruthenfordium 104
		- 	45 Sc scandium 21	89 yttrium 39	139 La* Ianthanum 57	[227] Ac* actinium 89
	9 beryllium 4	24 Mg 12	40 calcium 20	88 Sr strontium 38	137 Ba ^{barum} 56	[226] Ra ^{radium} 88
	7 Li Itthium 3	23 Na sodium 11	39 A potassium 19	85 Rb ^{rubidium} 37	133 Cs caesium 55	[223] Fr francium 87
-						

The Periodic Table of the Elements

0

 \sim

ശ

ß

4

ო

2

 \sim

P 7 5 8 2 0 A 0 2 2 4

DO NOT WRITE IN THIS AREA

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 The box gives the names of some substances.

iodine lithium methane water	bromine	chlorine	diamond	ethene	
	iodine	lithium	methane	water	

(a) Complete the table by choosing a substance from the box that matches each description.

Each substance may be used once, more than once or not at all.

(5)

Description	Substance
a good conductor of electricity	
an element that is a liquid at room temperature	
a substance that can be used to form a polymer	
an element that forms a basic oxide	
a substance that has a giant covalent structure	

(b) Describe a test for chlorine.

(Total for Question 1 = 7 marks)

3

DO NOT WRITE IN THIS AREA

- 2 This question is about the reactivities of metals.
 - (a) The table shows the reactions of four metals, P, Q, R and S, with water and with dilute hydrochloric acid.

	Metal	Reaction with water	Reaction with dilute hydrochloric acid
	Р	no reaction	no reaction
	Q	very fast reaction	(not done)
	R	no reaction	slow reaction
	S	slow reaction	fast reaction
	Ļ		
	least react	ive	
)	Give the le	etter of the metal that co	uld be zinc.

The letters are not the symbols of the elements.

(iii) Give a word equation for the reaction between aluminium and hydrochloric acid.

- (iv) Give the name of a metal that could be P.
 - (v) Give a reason why the reaction of Q with dilute hydrochloric acid is not done.

(1)

(1)

(1)

P 7 5 8 2 0 A 0 4 2 4

(b) The diagram shows the apparatus used to demonstrate the reaction between aluminium and iron(III) oxide. magnesium fuse mixture of aluminium powder and iron(III) oxide powder When the magnesium fuse is lit, a very exothermic reaction occurs. This is the equation for the reaction. $Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$ (i) State what is meant by the term **exothermic**. (1) (ii) State why aluminium displaces iron. (1) (iii) Explain why this reaction is a redox reaction. (2) (Total for Question 2 = 9 marks)

5

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) A sample of element Z contains three isotopes. The table shows the numbers of particles in the nucleus of each isotope and the percentage abundance of each isotope.

lsotope	Number of protons	Number of neutrons	Percentage abundance
1	12	12	79.0
2	12	13	10.0
3	12	14	11.0

Use the information in the table to calculate the relative atomic mass (A_r) of element Z.

Give your answer to one decimal place.

(4)

(d) Deduce the name of element Z.

A_r =

(Total for Question 3 = 10 marks)

7

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 7 5 8 2 0 A 0 8 2 4

(c) Calcium bromide is an ionic compound.

The table shows the formulae and melting points of caffeine and calcium bromide.

Name	Formula	Melting point in °C
caffeine	$C_8 H_{10} N_4 O_2$	235
calcium bromide	CaBr ₂	730

The relative formula mass of calcium bromide is similar to the relative formula mass of caffeine.

Explain why calcium bromide has a much higher melting point than caffeine.

(5)

.....

(Total for Question 4 = 12 marks)

9

A student uses paper chromatography in an experiment to separate the dyes in four 5 different felt tip pens, E, F, G and H. The diagram shows the appearance of the paper before and after the experiment. level reached by solvent baseline Е F G Н Е F G Н before after (a) (i) The chromatography paper is placed in a solvent. Explain why the spots on the baseline are placed above the level of the solvent. (2) (ii) Explain which two felt tip pens contain the same dye. (2)

	er adds a small piece of sodium to a trough of water. • two observations that are made when sodium reacts with water.	(2)
pher	r the reaction has stopped, the teacher adds a few drops of nolphthalein to the solution in the trough. ain the colour of the phenolphthalein after it is added to the solution.	(2)
	nt does a flame test to see if a white solid contains lithium ions. ean a platinum wire before using it for the flame test.	
(i) Expl	ain why the student needs to clean the platinum wire.	(2)

(c) Potassium aluminium sulfate can be used in baking. Anhydrous potassium aluminium sulfate has the formula $KAl(SO_a)_2$ (i) Give the formula of each ion in potassium aluminium sulfate. (2) potassium ion aluminium ion sulfate ion (ii) Potassium aluminium sulfate is normally found as a hydrated salt, with the formula KAl(SO₄)₂.xH₂O When 23.7 g of the hydrated salt is heated to remove all the water, 12.9 g of the anhydrous salt is formed. Calculate the value of x. [for KAl(SO₄)₂, $M_r = 258$ for H₂O, $M_r = 18$] (4) x = (Total for Question 6 = 13 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Describe tests that the technician should do to confirm	that the solution	
contains ammonium ions and carbonate ions.		(6)
 (Total f	or Question 7 = 13 ma	rks)
 (101411)		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

This question is about hydrocarbons. 8 (a) The molecular formula C_4H_8 represents all the isomers of an alkene. (i) Explain what is meant by the term **isomers**. (2) (ii) The displayed formula of one of the isomers of the alkene is shown. нннн -C—H -C--()= =(-Н Н Draw displayed formulae for two other alkene isomers with the molecular formula C₄H₈ (2) alkene isomer 1 alkene isomer 2 (b) But-1-ene reacts with bromine to form a compound with molecular formula C₄H₈Br₂ What is the name given to this type of reaction? (1)X **A** addition X combustion В X **C** decomposition X **D** substitution

P 7 5 8 2 0 A 0 1 6 2 4

- (c) The alkene $C_{_3}H_{_6}$ can be polymerised to form the polymer poly(propene).
 - (i) Draw the repeat unit of poly(propene).

(2)

(ii) These are two methods for disposing of polymers such as poly(propene).method 1 burying them in landfill sites

method 2 burning them to release heat energy

State one environmental problem linked to each of these methods of disposal.

method 2

method 1

DO NOT WRITE IN THIS AREA

(3)

x =

y =

(d) Complete combustion of one mole of an alkane produces 396 g of carbon dioxide and 180 g of water.

This is the equation for the reaction.

alkane + $xO_2 \rightarrow yCO_2 + zH_2O$

Calculate the values of x, y and z.

[for CO₂,
$$M_r = 44$$
 for H₂O, $M_r = 18$]

 (e) In a petrol engine, incomplete combustion occurs because there is a limited supply of oxygen.

(i) Petrol contains octane, C₈H₁₈

Complete the equation for this reaction, including state symbols.

 $\mathsf{C_8H_{18}(l)} + \dots \\ \mathsf{O_2(\dots)} \rightarrow \dots \\ \mathsf{CO(\dots)} + \mathsf{3C(\dots)} + \dots \\ \mathsf{H_2O(\dots)}$

(ii) Explain one problem for humans caused by a product of this incomplete combustion.

(2)

(2)

(Total for Question 8 = 15 marks)

9 A student uses this apparatus to investigate the rate of reaction between marble chips and dilute hydrochloric acid.

This is the equation for the reaction.

- $\mathsf{CaCO}_{_3} \ + \ \mathsf{2HCl} \ \rightarrow \ \mathsf{CaCl}_{_2} \ + \ \mathsf{H}_{_2}\mathsf{O} \ + \ \mathsf{CO}_{_2}$
- (a) During the reaction the reading on the balance decreases because mass is lost from the flask.
 - (i) State why mass is lost from the flask.

(1)

(ii) State the purpose of the cotton wool.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Loss in m in g	0.3 - 0.2 - 0.1 - 0
	0 2 4 6 8 10 12 14
(i) Explain the shape of	Time in minutes
You should assume	e that the marble chips are in excess. (4)
(ii) On the grid, draw t	the curve you would expect to obtain if the student uses
the same volume of	the curve you would expect to obtain if the student uses of hydrochloric acid but with half the concentration. her conditions are kept the same.

P 7 5 8 2 0 A 0 2 0 2 4

(c) The student repeats the experiment using the same mass of smaller marble chips.

Explain, using particle collision theory, how using smaller marble chips would affect the rate of this reaction.

Assume that all other conditions are kept the same as in the initial experiment.

(Total for Question 9 = 11 marks)

10 A student investigates the reaction between magnesium and nitric acid.

The student uses this method.

- add 40 cm³ of dilute nitric acid to a glass beaker
- record the temperature of the acid
- find the mass of a strip of magnesium ribbon
- add the magnesium ribbon to the nitric acid
- when all the magnesium has reacted, record the highest temperature reached
- (a) Complete the chemical equation for this reaction.

Mg + $2HNO_3 \rightarrow$ +

(b) The thermometer shows the highest temperature reached.

Complete the table by giving the temperatures to the nearest 0.1°C

(2)

(1)

starting temperature of the acid in °C	
highest temperature reached in °C	
temperature rise in °C	16.4

			23
	TOTAL FOR PAPER = 110 MAI	RKS	
	(Total for Question 10 = 11 ma	r ks)	
		(2)	
F			. kJ/mol
	Give your answer to two significant figures, including a sign in your answer.	(4)	
	Calculate the value of the enthalpy change (ΔH), in kJ/mol, for the magnesium reacting with nitric acid.		
(ii)	The mass of magnesium used by the student was 0.12 g.		
	[for the solution, $c = 4.2 \text{ J/g/}^{\circ}\text{C}$]	(2)	
(i)	Show that the heat energy change (Q) for this reaction is about 2800 J. [for 1.0 cm ³ of solution, mass = 1.0 g]		
	(ii) Ext	[for the solution, $c = 4.2 J/g/°C$] (ii) The mass of magnesium used by the student was 0.12 g. Calculate the value of the enthalpy change (ΔH), in kJ/mol, for the magnesium reacting with nitric acid. Give your answer to two significant figures, including a sign in your answer. $\Delta H =$ Explain why using a polystyrene cup, instead of a glass beaker, would give a more accurate result. (Total for Question 10 = 11 mat	$[for 1.0 \ cm^3 \ of solution, mass = 1.0 \ g] \\ [for the solution, c = 4.2 \ J/g/^{\circ}C] \eqno(2)$ (ii) The mass of magnesium used by the student was 0.12 g. Calculate the value of the enthalpy change (ΔH), in kJ/mol, for the magnesium reacting with nitric acid. Give your answer to two significant figures, including a sign in your answer. (4) $\Delta H = \dots \qquad (4)$ Explain why using a polystyrene cup, instead of a glass beaker, would give a more accurate result.

DO NOT WRITE IN THIS AREA

