2025 Prediction Paper 2 MARK SCHEME ## Q1. | Question
number | Answer | Notes | Marks | |--------------------|---|---|-------| | (a) | solvent front baseline chromatography pape solvent spot of food colouring | Two correct scores 2 One correct scores 1 | 3 | | (b)(i) | The only correct answer is C because food produces one spot so contains only one dy A is not correct because food colouring P poses does not contain only one dye B is not correct because food colouring Q poses not contain only one dye D is not correct because food colouring S poses not contain only one dye | produces four spots | 1 | | | C (Q, R and S) The only correct answer is C because food colourings Q, R and S have one dye in common as they all produce one spot which has travelled the same distance A is not correct because P, Q and R do not all produce one spot which has travelled the same distance B is not correct because P, R and S do not all produce one spot which has travelled the same distance D is not correct because P, Q, R and S do not all produce one spot which has travelled the same distance | | 1 | | Question
number | Answer | Notes | Marks | | (b) (iii) | M1 P M2 largest number of/four spots (in the chromatogram) | ALLOW "four
dyes"
ALLOW blobs /
dots / marks /
points for spots
M2 DEP on M1 | 2 | | | Tot | al for Question = 7 | marks | | Question
number | Answer | Notes | Marks | |--------------------|--|--|-------| | (a)(i) | (it has) gained oxygen /
oxygen has been added (to
it) | ACCEPT oxidation
number has increased /
changed from -2 to +4
ALLOW gained O / O
has been added
IGNORE references to
electrons | 1 | | (ii) | $Sb_2O_4 + 2C \rightarrow 2Sb + 2CO_2$ | | 1 | | Question
number | Answer | Notes | Marks | |------------------------|---|---|-------| | (b)(i) | Bi ³⁺ | | 1 | | (ii) | M1 strong electrostatic
forces/attractions
between the
(oppositely-
charged) ions | ACCEPT strong ionic
bonding/bonds / many
ionic bonds | 2 | | | | structure / lattice | | | | M2 large amount of (thermal / heat) energy required to overcome these | ACCEPT large amount of (thermal/heat) energy required to break the bonds | | | | forces/attractions | IGNORE more energy required | | | | | M2 DEP on M1 or near miss e.g. "strong bonds" | | | | | If reference to
intermolecular forces
/metallic/covalent
bonding, then score 0
out of 2 | | | (iii) | Bi ₂ O ₃ + 6 HCl → 2 BiCl ₃
+ 3 H ₂ O | | | | | M1 H₂O as only product not | | 2 | | | containing Bi | | | | | M2 equation fully correct
i.e.
formula of BiCl₃ and
balanced | ACCEPT multiples and halves | | | | | M2 DEP on M1 | | | Total for Question = 7 | | | | | Question | Answer | Notes | Marks | |----------|--|---|-------| | number | | Notes | Marks | | (a)(i) | Any two from: M1 sodium gets smaller /disappears | ALLOW
dissolves | 2 | | | M2 sodium moves/darts around | | | | | M3 white trail | | | | | M4 melts/forms a ball | | | | | M5 litmus/solution/liquid turns blue | IGNORE floats
fizzing/bubbles/
effervescence
IGNORE
references to
flames / sparks /
heat produced /
explodes | | | (ii) | $\begin{array}{lll} \textbf{2} \; Na(s) \; + \; \textbf{2} \; H_2O(I) \; \rightarrow \; \textbf{2} \; NaOH(aq) \\ + \; \textbf{(1)} \; H_2(g) \end{array}$ | ALLOW
multiples and
fractions | | | | M1 correct balancing | | 2 | | | M2 correct state symbols | | | | (b)(i) | (both) contain one electron in the outer(most)/valence shell | ALLOW same
number of
electrons in the
outer(most)
shell | 1 | | (ii) | (most reactive) potassium/K | | 1 | | | sodium/Na | | | | | (least reactive) lithium/Li | | | | | Total | for Question = 6 | marks | (Q03 4CH0/1C, June 2018) | Question
number | Answer | Additional guidance | Marks | |--------------------|---|--|-------| | (a) | An explanation that links together the following two points: | | | | | ${f M1}$ reaction is taking place in both directions (at same time) | ACCEPT both forward and
backward reactions are taking place
(at same time)
IGNORE it is a reversible reaction | 2 | | | M2 at equal rate | M2 DEP M1 | | | | | rate of the forward reaction is equal
to the rate of the backward reaction
scores 2 marks | | | | | REJECT both forward and backward reactions occur at constant rate for M2 | | | | | ALLOW the concentrations of the reactants and products remains constant scores 1 mark independently of M1 but REJECT concentrations of the reactants and products are equal/the same | | | (b) (i) | An explanation that links together the following two points: | | | | | M1 (the position of) equilibrium has moved to the left | ALLOW (position of) equilibrium has shifted in backwards direction | 2 | | | | ALLOW (position of) equilibrium has shifted towards the N ₂ O ₄ /reactants (side) | | | | | ALLOW increasing pressure shifts (position of) equilibrium in direction that produces fewer moles (of gas) | | | | | IGNORE references to Le
Chatelier's Principle eg increasing
pressure favours the side that has
fewer moles of gas / increasing
pressure favours the backwards
reaction | | | | M2 because there are fewer moles/molecules (of gas) on the left | f ALLOW particles REJECT atoms | | | | | ALLOW because there are fewer
moles of N ₂ O ₄ (than NO ₂)
ALLOW because there are fewer
moles of reactant (than product) | | | (ii) | the concentration of NO₂ has increased | ACCEPT reverse argument ALLOW molecules/particles of NO ₂ are closer together ALLOW molecules/particles of NO ₂ are in a smaller volume REJECT more NO ₂ produced | | | Question
number | Answer | Additional guidance | Marks | |--------------------|---|---|-------| | (c) (i) | nitrogen/ N_2 reacts with oxygen/ O_2 (both from the air) | IGNORE nitrogen burns/combusts
in oxygen
IGNORE nitrogen is oxidised | 1 | | (ii) | (they form) acid rain | ACCEPT references to respiratory problems ALLOW a specified harmful effect of acid rain ALLOW references to smog ALLOW references to greenhouse gases/global warming/climate change | 1 | | (iii) | 2NO + 2CO → N ₂ + 2CO ₂ | ACCEPT multiples and fractions | 1 | | Question
number | | Answer | Notes | Marks | |--------------------|-------|--|---|-------| | (a) | (i) | pipette | | 1 | | | (ii) | red wine would mask the colour of the indicator / difficult to see colour change (at end point) | ACCEPT indicator and red wine are a similar colour OWTTE | 1 | | | (iii) | to mix the contents (of the flask so that they can react) OWTTE | ACCEPT to ensure the colour change is permanent OWTTE | 1 | | | | | ALLOW to speed up
the reaction/ to ensure
lete reaction | | | | (iv) | so as not to add more wine than is needed
(for lete reaction)/ so as not to overshoot the
end point OWTTE | ACCEPT to find the act/precise point of neutralisation | 1 | | | | | IGNORE to obtain an accurate reading | | | (b) | | | | MAX 2 if final and | 3 | |-----|----|---|-------|--|---| | | М1 | final burette
reading in cm ³ | 22.70 | initial burette readings are reversed. | | | | M2 | initial burette
reading in cm ³ | 2.15 | MAX 2 if readings not
given to 2 decimal
places. | | | | МЗ | volume of wine
added in cm ³ | 20.55 | places. | | | | | - | | ALLOW ECF for M3 on
correct subtraction of
M1 – M2 | | | Question number | Answer | Notes | Marks | |-----------------|---------------------------------------|--|-------| | (c) (i) ip | Ticks in boxes 1, 3 and 4 | | 1 | | (ii) ip | setting out of calculation answer | | 2 | | | M1 <u>20.40 + 20.35 + 20.45</u>
3 | | | | | M2 20.40 | 20.40 without working scores 2 | | | | | 20.4 with or without
working scores 1 | | | | | If no results ticked then
only use of 2 or 3
concordant titres can | | | | | score both marks in (ii) If only one result ticked then M2 can be scored for averaging two or more titre values correctly | | | | | M1 CQ on results ticked | | | | | M2 CQ on correct calculation from M1 | | | | | Answer to M2 must be correct to 2dp | | | | | | Total 15 | |---------|--|---|----------| | | | Do not penalise not
multiplying by 1000 in
(iii) if they have not
divided by 1000 in (i) | | | | | 19.5
correctly evaluated to 2
or more sig figs. scores
1 | | | | | answer to (ii) | | | | | Correct answer without working scores 2 | | | | M2 0.0641 OR answer to M1 | ACCEPT any number of sig fig cept 1 | | | | M1 <u>0.00125 x 1000</u> OR <u>answer to (ii) x 1000</u> 19.50 19.5 | | | | (iii) | setting out of calculation final answer | | 2 | | (ii) | 0.00125 OR answer to (i) | | 1 | | | | Correct answer without working scores 2 | | | | M2 0.00125 | If no division by 1000
giving an answer of
1.25 award 1 mark | | | | M1 <u>25.0 x 0.05(00)</u>
1000 | | | | (d) (i) | setting out of calculation final answer | | 2 | ## (Q06 4CH1/2CR, June 2019) ### Q6. | Question
number | Answer | Mark | |--------------------|---|------| | (a) | (mass of solid) 5.3 (g) (1) (mass of water) 20.9 (g) (1) | 2 | | Question
number | Answer | Mark | |--------------------|---|------| | (b) | • (10.5 ÷ 16.8) × 100 (1)
• 62.5 (grams of solid per 100 g of water) (1) | 2 | | Question
number | Answer | Mark | |--------------------|---|------| | (c) | An explanation that links together the following three points: the gas will escape (1) the mass of solid remaining will be less (than it should be) (1) the value of the calculated solubility will be lower (than it should be) (1) | | | | | 3 | (Total for question = 7 marks) (Q02 4CH1/2C, SAM 0) | Question
number | Answer | Additional guidance | Marks | |--------------------|---|--|-------| | (a) | C (electrostatic attraction between positively charged particles and delocalised electrons) is correct as it describes metallic bonding | | 1 | | | A is incorrect since it describes ionic bonding not metallic bonding | | | | | B is incorrect since it describes covalent bonding not
metallic bonding | | | | | D is incorrect since it describes interatomic or intermolecular forces not metallic bonding | | | | (b) | Any two from the following: | | | | | M1 good conductor of heat/thermal energy | | 2 | | | M2 does not react with food/affect flavour of food | IGNORE non-toxic | | | | M3 resistant to corrosion | ALLOW does not corrode/rust
IGNORE unreactive/inert | | | | M4 high melting point | IGNORE references to recycling | | | | M5 low density/lightweight/strong | IGNORE light | | | | | | | | Question
number | Answer | Additional guidance | Marks | |--------------------|--|--|-------| | (c) (i) | a mixture of (two or more) elements, one of which is a metal | ACCEPT a mixture of (two or
more) metals
ALLOW combination for mixture
REJECT compound or references to
chemical bonding | 1 | | (ii) | An explanation that links together the following three points: $ \\$ | | | | | M1 the regular arrangement of atoms is distorted/disrupted OWTTE | ALLOW lattice/layers/rows of
atoms are disrupted/distorted
ALLOW lattice/layers/rows of
atoms less regular | 3 | | | M2 because magnesium atoms are larger than aluminium atoms | ALLOW magnesium and aluminium atoms are of different sizes | | | | M3 and therefore it is more difficult for the layers to slide over one another | ALLOW layers cannot (as easily) slide over one another | | | | | IGNORE references to strength of metallic bonds | | (Q04 4CH1/2C, June 2019) | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (a)(i) | Chloroethene | accept vinyl chloride | 1 | | Question
number | Answer | Additional guidance | Mark | | (a)(ii) | Poly(chloroethene) | accept polyvinyl chloride ignore PVC | 1 | | Question
number | Answer | Additional guidance | Mark | | (b) | F F | ignore bond angles | 1 | | Question
number | Answer | Additional guidance | Mark | | (c)(i) | Correct ester link (1) Rest of unit correct (1) | | | | | Example: | accept: | | | | O | O | 2 | | Question number | Answer | Additional guidance | Mark | | (c)(ii) | Water/H ₂ O | if both name and formula given, both must be | | (Total for question = 6 marks) (Q08 4CH1/2C, SAM 0) | Question
number | Answer | Notes | Marks | |--------------------|--|--|-------| | (a) (i) | 2CH ₃ COOH + K ₂ CO ₃ → 2CH ₃ COOK + CO ₂
+ H ₂ O | ALLOW multiples | 2 | | | M1 2CH₃COOK | ACCEPT 2CH₃ COO·K+ | | | | | ALLOW 2KCH₃COO | | | | M2 CO ₂ + H ₂ O | If M1 not awarded any
numbers before CO ₂ +
H ₂ O can be ignored and
M2 can be awarded. | | | | | For both marks to be
awarded the equation
must be correctly
balanced | | | (ii) | effervescence / fizzing / bubbles | IGNORE carbon
dioxide/gas given
off/evolved/ formed
/produced | 1 | | | | IGNORE mention of incorrect gas | | | (b) (i) | (acts as a) catalyst | ACCEPT increases the rate of the reaction/speeds up the reaction | 1 | | (ii) | ethanol is flammable / might catch fire / might ignite | ACCEPT ethyl ethanoate
/the mixture /it is
flammable /might catch
fire /might ignite | 1 | | (iii) | (ester has) sweet / fruity / distinctive smell | ALLOW liquid (ester)
floats on top of mixture
OWTTE | | | Question
number | Answer | Notes | Marks | |--------------------|---|---|----------| | (c) (i) | H
H-C-O-H
H H O
H-C-C-C
H H · O-H | Penalise missing bond
between O and H once
only | 3 | | | H H H H H H H H H H H H | If incorrect number of
carbon atoms in
alcohol and or acid
allow ECF for structure
of ester formed from
their alcohol and acid | 1 | | (ii) | water | ACCEPT H ₂ O | ' | | (d) | food flavourings / perfumes | ACCEPT any correct
use
e.g. in cosmetics /
making soaps / making
detergents /solvents
(for paints / varnishes) | 1 | | | | | Total 11 | | Question
number | Answer | Notes | Marks | |--------------------|--|---|-------| | | Yeast | ALLOW zymase
IGNORE enzyme(s) | 1 | | (ii) | $(C_{12}H_{22}O_{11} + H_2O \rightarrow) 2$
$C_6H_{12}O_6$ | ACCEPT multiples and fractions | 1 | | | | IGNORE state symbols even if incorrect | | | (iii) | $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$ | ACCEPT multiples and fractions | 1 | | | | IGNORE state symbols even if incorrect | | | | | ALLOW C₂H ₆ O for ethanol | | | (iv) | C (fractional distillation) | | 1 | | | A is incorrect as you could not obtain ethanol by crystallisation | | | | | B is incorrect as you could not obtain ethanol by filtration | | | | | D is incorrect as simple
distillation is not the most
effective way to obtain
ethanol | | | | Question
number | Answer | Notes | Marks | | (b)(i) | phosphoric acid | ACCEPT H₃PO₄ If both name and formula given, mark name only | 1 | | | | REJECT phosphorus acid | | | | | IGNORE reference to concentration | | | (ii) | M1 300 (°C) | ACCEPT any temperature,
or range of temperatures,
between 250 and 350
inclusive | 2 | | | | ACCEPT temperatures in other units provided unit is given | | | | M2 60-70 (atm) | ACCEPT any pressure or range of pressures between 60 and 70 inclusive | | | | | ACCEPT pressures in other units provided unit is given e.g. 6 x 10 ⁶ Pa to 7 x 10 ⁶ Pa | | | Question
number | Answer | Notes | Marks | |--------------------|---|--|---------| | (c)(i) | dehydration | ACCEPT (thermal) decomposition/elimination | 1 | | (ii) | (to act as a) catalyst | ACCEPT to increase the rate of reaction | 1 | | | | IGNORE to lower the activation energy | | | | | IGNORE references to increased surface area | | | (d)(i) | (contains a carbon to
carbon) double bond /
C=C | ALLOW multiple bond | 1 | | (ii) | M1 (from) orange | ACCEPT brown/yellow or
any combination of
orange/brown/yellow
e.g. orange-brown | 2 | | | | REJECT red | | | | M2 (to) colourless | IGNORE clear | | | | | ALLOW decolourised | | | | | REJECT discoloured | | | | | Award 1 mark for two correct answers in wrong order | | | | | Total for Question | on = 12 | (Q05 4CH0/2C, June 2018) | Question
number | Answer | Notes | Marks | |--------------------|---|---|-------| | (a) (i) | M1 oxidation is loss of electrons | DE IECT | 2 | | | M2 chloride ions/Cl ⁻ lose electrons (so oxidised) | REJECT
chlorine/Cl/Cl ₂ loses
electrons
ALLOW chloride loses
electrons | | | (ii) | 2H ₂ O + 2e ⁻ → 2OH ⁻ + H ₂ | ACCEPT multiples | 2 | | | M1 all correct species | | | | | M2 correctly balancing | | | | | M2 dep on M1 | | | | (b) | Cl ₂ + 2NaOH → NaCl + NaOCl + H ₂ O | ACCEPT multiples | 1 | | (c) (i) | M1 monomers join together/ double bonds broken (in monomers) | ALLOW link/add in
place of join | 2 | | | M2 to form a long chain (molecule)/large molecule | | | | (ii) | | | 2 | | | M1 correct repeat structure | No M1 if more than 1 repeat unit shown | | | | M2 brackets and continuation bonds and n | ACCEPT n anywhere after the brackets but not before | | | | | REJECT any structure
with a double bond
for both marks | | (Q07 4CH0/2C, Jan 2018) | Question
number | Answer | Notes | Marks | |--------------------|---|--|-------| | (b)(iv) | volume from candidate's graph to ± 0.2 cm ³ | Do not award mark if lines do not cross. | 1 | | (v) | Any 2 from | | 2 | | | M1 started with less than 5cm³ potassium chromate | | | | | M2 added too little lead(II) nitrate | | | | | M3 precipitate not left for long enough to settle | If no other mark scored allow 1
mark for misread
volume/misread height | | | (c)(i) | M1 filter (off the precipitate) | ALLOW 'decant' | 3 | | | M2 wash <u>precipitate/solid/lead(II)</u>
<u>chromate</u> (with
distilled/deionised/pure water) | REJECT refs to crystallisation for M2 and M3 | | | | M3 dry in a (warm) oven / leave to
dry / dry with filter
paper | REJECT any direct method of heating with a flame, eg Bunsen burner | | | (ii) | M1 flame test M2 lilac | ACCEPT description of flame test
IGNORE burn
ALLOW purple/pink | 2 | | Question
number | Answer | Notes | Marks | |--------------------|--|--|--------| | (d) | M1 n[KI] = 5.0 x 0.90/1000 = 0.0045 (mol) | Correct answer without working scores 3 marks | 3 | | | M2 $n[(Pb(NO_3)_2] = \frac{1}{2} \times M1 = 0.00225 \text{ (mol)}$ | | | | | M3 $conc^n[Pb(NO_3)_2] = M2$
$\times 1000/8 = 0.28 \text{ (mol/dm}^3)$ | ACCEPT any number of sig figs,
correctly rounded, except 1
Calculator value is 0.28125 | | | | | 0.56(25) and 1.1(25) both score 2 marks | | | | | Total for Question | n = 18 | | Question number | Answer | Notes | Marks | |-----------------|---|--|-------| | (a) (i) | (24 + 16) = 40 | | 1 | | (ii) | Li ⁺ and F ⁻ | both needed | 1 | | (b) | Any four from | | 4 | | | M1 strong (electrostatic) forces/attraction | ACCEPT strong (ionic) | | | | M2 between oppositely charged ions | 551145 | | | | M3 a large amount of energy needed to
overcome attraction / break down
lattice/break bonds | | | | | M4 (MgO higher melting point as) greater charge on Mg^{2+} (than Li^+) / greater charge on O^{2-} (than F^-) | | | | | M5
EITHER
so stronger attraction/forces/bonds (in MgO) | Must be a comparison to gain M5 | | | | OR
more (thermal/heat) <u>energy</u> required to
overcome attraction / break down
lattice/break the bonds (in MgO)/ORA | | | | | | MAX 2 if any reference to intermolecular forces/covalent bonding/electron sharing/molecules/metallic bonding | | | (c) | M1 (when) solid ions in fixed positions/don't move/only vibrate | IGNORE electrons
ALLOW atoms | 2 | | | M2 (when) molten or in solution ions can move/mobile | REJECT electrons/atoms | | | | | MAX 1 if mention of sharing
of electrons/covalent
bonding | | (Q06 4CH0/2C, Jan 2018) | Question
number | Answer | Notes | Marks | |--------------------|--|--|-------| | (a) (i) | M1 volume of water M2 temperature of water before and after burning | ALLOW mass of water ALLOW temperature change | 2 | | (ii) | M1 n[heptanol] = 0.75 ÷ Mr OR evaluated correctly and quoted to at least two significant figures | calculator answer
from 114 is
0.0065789473684
(mol)
calculator answer
from 116 is
0.0064655172 | 3 | | | M2 19 ÷ M1 M3 evaluated correctly and quoted to at least two significant figures | calculator answer from 114 is 2888 (kJ/mol) = 2900 (kJ/mol) to 2 sig fig calculator answer from 116 is 2938.66 (kJ/mol) = 2900 (kJ/mol) to 2 sig fig IGNORE sign in final | | | | OR | answer | | | | M1 (0.75g produces 19kJ) | | | | | so 1g produces 19 \div 0.75 = 25.33 (kJ) | | | | | M2 so 114g produces 114 x 25.33 | from 114 calculator | | | | M3 evaluated correctly and quoted to at least two significant figures | the answer is 2888
(kJ/mol)
= 2900 (kJ/mol) to 2
sig fig | | | | | IGNORE sign in final answer | | | | | correct answer with no working scores 3 | | | Question
number | Answer | Notes | Marks | |--------------------|---|---|-------| | (b) (i) | M1 Σ (bonds broken) = [(2 × 436) + 498] OR 1370 (kJ) | IGNORE sign | 3 | | | M2 Σ (bonds formed) = 4 × 464 OR 1856 (kJ) | IGNORE sign | | | | M3 Δ <i>H</i> = - 486 (kJ) | negative sign is required | | | | | -486 with or
without working
scores 3 | | | | OR | (+)486 with or
without working
scores 2 | | | | if M1 and/or M2 incorrect: | | | | | M3 numerical difference between M1 and M2 | | | | | If M2 greater than M1 answer must be negative | unless a clear | | | | If M2 less than M1 answer must be positive | statement is made that reaction is exothermic then sign can be negative | | | Question
number | Answer | Notes | Marks | |--------------------|---|--|--------| | (b) (ii) | M1 for $2H_2 + O_2$ and $2H_2O$ in correct positions | ALLOW hydrogen
and oxygen and
water
ALLOW reactants
and products | 2 | | | M2 Δ <i>H</i> correctly placed and labelled | Mark CQ on sign
in (i) | | | | | ACCEPT ΔH label on vertical line/double arrow/arrow pointing from reactants level to product level | | | | | REJECT arrow pointing from products level to reactants level | | | | | IGNORE
activation energy
attempts | | | | | Total for Questic | n = 10 | (Q06 4CH0/2CR, June 2018) | Question
number | | A | nswer | | Notes | Marks | |--------------------|----------------------|-------------------------------------|-------------------------|---------------------------|--|-------| | (a) | М1 | (Cu)
34.60
63.5 | (Fe)
30.52
56 | (S)
<u>34.88</u>
32 | Division by atomic numbers or other
inappropriate numbers scores 0/3
Fractions upside down scores 0/3
ACCEPT use of 64 for Cu | 3 | | | М2 | 0.545 | 0.545 | 1.09 | With 63.5 = (0.54488 0.545 1.09) With 64 = 0.5406 0.545 1.09 ALLOW any number of sig figs greater than one, rounded correctly ALLOW ECF from minor error in M1 | | | | | | | | ALLOW M3 to score from 0.5:0.5:1 or other incorrect rounding in M2 | | | | M3 (
num | ber) | the smalle | est
2 | | | | | | Calculatior
5/184 | of Mr of (| CuFeS ₂ = | | | | | M2 e
each
183. | expression
element of
5 x 100 | for percei | 63.5 ÷ | | | | | equa | | to show tl
Cu, 30.52 | | | | | (b) | (i) | (sulfur) gained oxygen | ALLOW combined with oxygen | 1 | |-----|-------|---|--|---| | , , | ` ' | , | ALLOW had oxygen added | | | | | | ALLOW gained 0/02 | | | | | | IGNORE formed sulfur dioxide/SO ₂ | | | | | | IGNORE reacted/mixed with oxygen | | | | | | ACCEPT oxidation state/number | | | | | | increases | | | | | | ACCEPT oxidation state/number | | | | | | changes from -2 to (+)4 | | | | | | IGNORE references to electron loss | | | | (ii) | CuS + O ₂ → Cu + SO ₂ | ACCEPT multiples and halves | 1 | | (c) | (i) | hydrogen (ion) / H+ | ACCEPT hydronium (ion) / H ₃ O ⁺ | 1 | | (-/ | (-) | ., | If both name and formula given, both | | | | | | must be correct | | | | | | | | | | (ii) | (blue/purple/neutral litmus (paper)) | | 1 | | | | turns/goes red | | | | | | | | | | | (iii) | M1 effervescence/bubbles/fizzing | ACCEPT gas given off/formed/produced | 2 | | | | | IGNORE name of gas | | | | | | IGNORE hydrogen/H ₂ | | | | | M2 magnesium/solid/ribbon | ACCEPT magnesium/solid/ribbon | | | | | disappears | dissolves | | | | | | ACCEPT magnesium/ solid/ribbon gets | | | | | | smaller | | | | | | IGNORE mass decreases | | | | | | IGNORE reference to movement | | | | | | | | | | | | IGNORE references to temperature | | | | | | change/heat evolved/exothermic | | | | | | REJECT extra incorrect observations | | | | | | e.g. white flame | | | | | | | | ## Q16. | _ | Question
number | | Answer | Notes | Marks | |---|--------------------|-----|--|---|--------------| | | a | | gas escapes / gas is lost
(from the crucible) | Accept gas is given off / gas is evolved / gas is released / gas is given off Allow carbon dioxide/CO ₂ for gas Ignore copper(II) carbonate decomposes Reject incorrect name of gas | 1 | | | b | | (CuCO ₃ (s)) green | Ignore qualifiers such as pale / dark Reject any other colours | 1 | | | | | (CuO(s)) black | Ignore qualifiers such as pale / dark Reject any other colours Allow 1/2 for two correct colours in wrong order | 1 | | | С | i | 1 | - | 1 | | | | ii | the last two masses are not the same OR no two masses are the same | Part (ii) DEP on correct or missing answer to part (i) Accept mass still changing / mass not constant / mass is still decreasing Accept results / readings in place of mass Accept reverse argument eg the others are to constant mass | 1 | | | | iii | D (spirit burner instead of Bunsen burner) | | 1 | | | d | | 3.4 × 100
3.7 | | 1 | | | | | 92 % | Accept 3 or more sf, eg 91.9 /
91.89 / 91.892
Correct answer with no working
scores 2
Allow 1 mark for 0.92 | 1
8 marks | (Q02 4CH0/2C, June 2015) ## Q17. | Question
number | Answer | Accept | Marks | |--------------------|---|---|-------| | (a) | $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$ | multiples and fractions | 1 | | (b) | M1 32 (of S) \rightarrow 80 (of SO ₃)
(tonnes or g) | M1 $n(S) = (n(SO_3)) = \frac{80 \times 10^6}{32} $ (mol)
(= 2500 000 (mol)) | 3 | | | M2 mass of SO ₃ = $\frac{80}{32} \times 80$
M3 = 200 (tonnes) | M2 mass of $SO_3 = M1 \times 80$
(= 200 000 000 (g)) | | | | M2 csq on M1 | $M3 = M2 \div 10^6 / 200 \text{ (tonnes)}$ | | | | M3 csq on M2 Correct answer with no working scores 3 | | | | (c) | M1 64 (g) (of SO ₂) reacts with 12 (dm ³) (of O ₂) M2 (64 tonnes) reacts 12 x 10^6 (dm ³) OR 1.2 x 10^7 (dm ³) | M1 $n(SO_2) = \frac{64 \times 10^6}{64}$ (mol) (= 10^6 mol)
M2 $\frac{M1}{2} \times 24 / 1.2 \times 10^7$ (dm ³)
OR | 2 | | | M2 csq on M1 Correct answer with no working scores 2 | M1 mass of oxygen
accept 1.2 x 10 ¹⁰ cm ³ | | (Q07 4CH0/2C, Jan 2015)