Question	Part	Answer	Notes	Marks
	а	B - Gold		1
	b	A - Group 1, Period 2		1
	с	27.8/7 = 3.97; 64.1/32 = 2.00; 127.8/16 = 7.98	Find moles of each element using moles = $mass/A_r$	3
		$3.97/2 \approx 2$; $2/2 = 1$; $7.98/2 \approx 4$		
		So formula = Li ₂ SO ₄		
1		For Li⁺ perform a flame test	Credit description of flame test	
		Sample into blue bunsen flame		
	d	Flame should turn red	Accept crimson red	5
	u	Add barium chloride to solution	Credit add HCl first	5
		White precipitate of barium sulphate formed		
		Confirming SO4 ²⁻		
	а	Neutralisation		1
	b	Changes from yellow to orange/red	Allow 'yellow to red' but not 'red to yellow'	1
	с	Methyl orange gives sharp, distinct colour change	Credit idea that is easier to tell colour with methyl orange	1
	C	Or methyl orange is more sensitive/accurate than UI	Credit other reasonable answers	1
		3.9 cm ³		
	d	27.4 cm ³		3
2		$27.4 - 3.9 = 23.5 \text{ cm}^3$		
2	е	Sulphuric acid dissolves in water	Credit 'dissociates/ionises' in water	2
	e	To from H ⁺ and SO ₄ ²⁻ ions	Both needed for the mark	-
	f	Moles of NaOH = 0.200 * (25/1000) = 0.005 mol		3
		Moles of $H_2SO_4 = 0.005/2 = 0.0025$ mol	Because a 2:1 ratio of NaOH to H ₂ SO ₄	
		$0.0025/0.0235 = 0.106 \text{ mol/dm}^3$	$Vol = 23.5 \text{ cm}^3/1000 = 0.0235 \text{ dm}^3$	
	g	g 0.0106 * 2 = 0.212	Because $2H^+$ for every mole of H_*SO_4	1
	g		If using 0.25 mol/dm ³ then answer = 0.5	-

		Colorimiter is used to measure the concentration of chlorine gas	As chlorine gas is green in colour		
	а	So can be used to measure the position of equilibrium	Credit if equilibrium is on left or right	2	
		Or idea that colorimeter gives a quantitative/objective measure			
		Reaction is reversible	Credit idea that reaction never goes to completion		
	b	Some PCIs still remains in system	Credit idea of dynamic equilibrium	2	
		Or idea that PCl ₃ dilutes green colour			
		At higher pressure, green colour intensity is lower			
3	с	Because increasing pressure favours side with fewer number of gas molecules	Credit converse	3	
		So equilibrium shifts to the left, decreasing the concentration of chlorine gas	Which reduces the green light intensity		
		At higher temperatures, intensity of green colour increases			
	d	Meaning more chlorine is produced		2	
		So equilibrium shifts to the right	Which is the case for endothermic reaction when temp. increases		
		5 * 326 = 1630	These are the 5* P-Cl bonds broken		
	е	(3 * 326) + (1* 242) = 1220	These are the 3* P-Cl bonds and 1* Cl-Cl bond formed	3	
		1630 - 1220 = +410 kJ/mol			

	а	Hydroxyl or OH group		1
		12n + (2n + 2) = 86	Credit idea that general formula for alkanes = $C \square H_2 \square_{+2}$	
	b	14n = 84 so n = 6		2
		Therefore formula = C_6H_{14}		
		Alkanes are highly flammable and burn easily in oxygen	Credit idea that alcohols are not as flammable	2
	с	Alkanes release lots of energy per gram or per mole	Or idea that alcohols participate in incomplete combustion	2
		First method = alcoholic fermentation		
		Glucose from plants combined with yeast	Credit sugar	
		At around 30-40°C in anaerobic conditions		
4		Renewable and carbon neutral		
4	d	Produces impure ethanol that needs distillation		
		$C_6H_{12}O_6 \rightarrow 2C_2H_6OH + 2\ CO_2$		5
		Second method = hydration of ethene gas		
		Ethene from crude oil/fossil fuels	Credit ethene as a product of cracking	
		At 300°C, high pressure and acid catalyst		
		Produces pure ethanol with no extra purification needed		
		$C_2H_4 + H_2O \rightarrow C_2H_5OH$	Full marks requires at least 3 valid comparison points	
	e	Four C atoms in chain with COOH group at the end	See structure <u>here</u>	1
	f	Ethyl butanoate		1
	g	Fruity smell	Credit 'sweet smelling'	1
	а	Points correctly plotted within half-square	Temperature on x-axis and Mass of Carbonate Dissolved on y-axis	1
	b	Result at 50°C circled	This value is too high	1
	с	Smooth continuous curve	Do not credit if value at 50°C is included	1
5		Student may have incorrectly weighed ammonium carbonate	They may have added too much to the solvent	
	d	Solution may not have been fully dissolved before measuring	Leaving undissolved solvent	2
		Student may have read the thermometer incorrectly		
	е	Extended best fit curve to 80°C		2
		Draw line at 80°C up to the curve then along to y-axis	Typical answer would be around 150 g in 30 cm ³ of water	2
	f	Read mass of ammonium carbonate at 25°C	This is approx. 40 g in 30 cm ³ of water	2
	1	(40/30) * 100 = 133.3 g/100 g of water	Credit 1 mark if value is sig. different but same method	-
	g	One lone pair of electrons on N	Either 2 crosses or 2 dots	2
	ь	3 bonding pairs between N and H	1 cross and 1 dot for each electron - see diagram here	2

6	а	Aqueous NaCl contains free moving Na $^{\scriptscriptstyle +}$ and Cl $^{\scriptscriptstyle -}$	Credit idea that ions are free to move	2	
		These ions can carry charge	Allowing electricity to flow through the solution	2	
	b	At anode Cl^- ions lose electrons to form Cl_2 gas	Credit positive electrode		
		So are oxidised			
		$2 Cl^- \rightarrow Cl_2 + 2e^-$			
		At cathode water molecules gain electrons to form H_2 gas	Credit negative electrode	4	
		So are reduced			
		$2H_2O+2e^-\!\rightarrow H_2+2OH^-$			
		$\text{Or } 2\text{H}^{\scriptscriptstyle +} + 2\text{e}^{\scriptscriptstyle -} \to \text{H}_2$	Half-equations needed for full marks		
	с	In aqueous NaCl, sodium ions are more reactive than hydrogen ions	So hydrogen gas is produced instead of sodium metal	2	
		So use molten NaCl instead	As only Na ⁺ and Cl ⁻ ions are present	2	
	d	0.5 * (40/1000) = 0.02 moles per min	n = c * v / 1000		
		0.02 * 60 = 1.2 moles of NaOH per hour			
		For every 2 moles of NaOH, 1 mole of $Cl_{\scriptscriptstyle 2}$ and 1 mole of $H_{\scriptscriptstyle 2}$ produced	This is from the balanced equation	4	
		0.6 + 0.6 = 1.2 moles of gas			
		1.2 * 24 = 28.8 dm ³ per hour			